GRAPHS AND NETWORKS

an exception; the vertex is allowed to vertices cannot.

4

To

В

0 0

С 0

1

is eulerian if everv degree (the circuit ny vertex).

graph is semipair of vertices with , rail starts and ends e two vertices).

Transition Matrix

Any entries of 0 in an adjacency matrix to the n^{th} power means it's impossible to move to and from the points corresponding to that entry in n steps.

0 0 0 0 1 0 1 $\begin{array}{c} 1 \\ 0 \end{array}$ 0 0 M = I $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 0 1 0 0 Lo

It is *impossible* to go from A to A, B to B, C to C, D to A, D to B, D to D, E to A, E to B, E to C or E to E in 1 step. An example of a 1 step option is that it is possible to go from A to B in 1 step in 2 different ways. <u>2 S</u>

tep: adjacency matrix M ²									
	5	1	2	1	0				
	1	5	2	1	0				
$M^{2} =$	2	2	3	0	1				
	1	1	0	2	0	÷			
	0	0	1	0	1				

It is impossible to go from D to C. E to A, E to B or E to D in 2 steps.

An example of a 2 step option is that it is possible to go from A to A in 2 steps in 5 different ways.

 $M + M^{2} = \begin{bmatrix} 5 & 3 & 3 & 1 & 0 \\ 3 & 5 & 3 & 1 & 0 \\ 3 & 3 & 3 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

It is impossible to go from E to A or E to B in 1 or 2 steps. An example of a 1 or 2 step options is

that it is possible to go from A to C in 1 or 2 steps in 3 different ways.

Different Types of Walks Examples

Using the graph, give an example of a:

- Open Walk: BACAFDE Closed Walk: DCFACD
- Open Path: BADEF
- Closed Path (Cycle): BCDEFAB
- Open Trail: BCDFCA •
- Closed Trail (Circuit): FACFDEF

Rule	Open/Closed	Name	Also Called	Edges	Vertices	<u>*Cycle:</u> there is
Uses only some	Open	Path	-	Can't Repeat	Can't Repeat	starting and finishing
vertices or	Closed	Path	Cycle*	Can't Repeat	Can't Repeat	repeat whilst all othe
edges in a	Open	Trail	-	Can't Repeat	May Repeat	**Eulerian: a graph
graph	Closed	Trail	Circuit	Can't Repeat	May Repeat	vertex has an even
Rule	Туре	Name	Open/Closed	Edges	Vertices	starts and ends on a
Uses all	Eulerian**	Circuit	Closed	All Edges in	May Report	***Semi-Eulerian:
edges or	Semi-Eulerian***	Trail	Open	Graph Once	мау кереа	eulerian if it has one
vertices in a	Hamiltonian	Cycle	Closed	May Papagt	All Vertices in	an odd degree (the
graph	Semi-Hamiltonian	Path	Open	way Repeat	Graph Once	on either one of the

BIVARIATE DATA

Types of Variables		
Numerical or	┝─▶	Discrete
Quantitativa		
Quantitative	⊢►	Continuous
Categorical or	⊢►	Ordinal
Qualitativa		
Qualitative	┝╼┝	Nominal

Numerical or Quantitative: have values that a measurable quantity as a describe number, like 'how many' or 'how much'. Discrete: can take whole values (e.g. number of children or number of cars) Continuous: can take any value (e.g. height, time and temperature).

Categorical or Qualitative: have values that describe a 'quality' or 'characteristic' of data. Ordinal: observations that can logically ordered or ranked (e.g. academic grades such as A, B, C, D or clothing sizes such as small, medium, large).

Nominal: observations that cannot be ordered logically (e.g. eye colour, brand, gender, religion).

Line of best fit: y = 0.8x - 0.2

Estimating y when x = 4 can

Interpolation

Using the line of best fit to predict values that lie within the range of the data.

Stacked Column Graph

Data "stacked" on top of each other and totals to 100% on the y-axis. Below are the results of a survey taken from 4 countries that shows their preferred fruit.

To determine what percentage of each fruit that a country likes, find how wide each coloured column is by comparing it to the y-axis.

100%	_		_	_	_		_		_	—	
80%	_			_	_				_	_	
60%	_			_	_				_	_	Peaches
40%	_			_	L.				_	_	Apples
20%	_			_				_	_	-	Bananas
0%	_									_	
	Brazil Japan France Italy										

akdown of Porcontages by Count

Country	Peaches	Apples	Bananas					
Brazil	20%	40%	40%					
Japan	20%	20%	60%					
France	60%	40%	0%					
Italy	40%	40%	20%					

response and Explanatory ve	inabico
Response Variable	Explanatory Variable

Vertical Axis (y-axis) Horizontal . Explanatory Variable causes the Response Variable (e.g. being immunized causes resistance to disease or number of books read causes reading speed to be low, medium or high).

Pearson's Correlation Coefficient (r)

The value r such that -1 < r < 1 measures the direction and strength of a linear relationship between two variables.

Coefficient of Determination (r^2)

The value r^2 such that $0 \le r^2 \le 1$ shows the percentage of the variation in the response variable with the variation in the explanator in the response variable with the variable variable in the explanator of the data that is the closest to the line of best fit (i.e. if $r^2 = 0.85$, then 85% of the data is close to the line of best fit). Also, r^2 is equal to Pearson's Correlation Coefficient squared.

Least-Squares Line/Line of Best Fit (y = ax + b)

A linear equation that summarises the relationship between two variables where a is the gradient of the line (calculated by a = rise/run) and b is the y-intercept.

Extrapolation

Using the line of best fit to predict values that lie outside the range of the original data. Not recommended as the nature of the data beyond what was recorded is unknown (especially if the correlation coefficient is weak). Using the graph on the left, estimating the value of \boldsymbol{y} when x = 10 is considered extrapolation as x10 lies outside the range of x values (0 - 5).

y = 0.8(10) - 0.2 = 7.8. (10,7.8) is the extrapolated point.

Two-Way Table

Displays data between two variables. Below is a twoway table showing the popularity of apples, bananas and peaches among males and females:

Fruit	Male	Female	Total
Apple	20	40	60
Banana	90	110	200
Peach	50	70	120
Total	160	220	380

What % of apples are liked by males?

total likes of apples by males $= \frac{20}{60} = 33.33\%$

What % of males or females don't like peaches? total likes of bananas and apples 260total males and females 380 = 68.42%

Construct a table of percenta

Fruit	Male	Female	Total					
Apple	5.26%	10.53%	15.79%					
Banana	23.68%	28.95%	52.63%					
Peach	13.16%	18.42%	31.58%					
Total	42.11%	57.89%	100%					

Describing a Scatterplot

Form: The type of pattern that the points follow (i.e. linear or non-linear). Direction: What direction the points tend towards (i.e. positive or negative). Strength: How closely the points follow a linear pattern (i.e. perfect, strong, moderate, weak or no relationship)

Value of r	Form	Direction	Strength
r = 1	Linear	Positive	Perfect
$0.75 \leq r < 1$	Linear	Positive	Strong
$0.5 \leq r < 0.75$	Linear	Positive	Moderate
$0.25 \leq r < 0.5$	Linear	Positive	Weak
$-0.25 \leq r < 0.25$	None	None	None
$-0.5 \le r < -0.25$	Linear	Negative	Weak
$-0.75 \le r < -0.5$	Linear	Negative	Moderate
-1 < r < -0.75	Linear	Negative	Strong
r = -1	Linear	Negative	Perfect

Residuals

<u>Step 1:</u> Create a scatterplot and determine the correlation coefficient and the line of best fit (i.e. line of best fit is y = 0.8x + 0.6 and r = 0.8). <u>Step 2:</u> determine the residual using the formula $e = y - \hat{y}$ and create a residual plot. Step 3: analyse residual plot (i.e. random pattern indicates linear model is a good fit).

Residual Plots Random Pattern: A random pattern in a residual plot indicates that the data is a good fit for a linear model.	10 5 0 -5 -10	· · · · · · · · · · · · · · · · · · ·
--	---------------------------	---------------------------------------

Correlation Does Not Imply Causation

е

0.6

If two variables have a strong correlation between them, it does not necessarily mean that one variable causes the other variable in reality (e.g. if the variables ice cream sales and number of deaths due to drowning have a strong positive correlation coefficient of 0.9, it doesn't mean the two variables have a strong observable relationship in real life).

Causes of Incorrect Calculations of Pearson's Correlation Coefficient

- Coincidence: it could be a coincidence that data collected has a strong correlation (i.e. there is always the possibility that the data collected showed a strong correlation by random chance). To reduce the chance of a coincidence occurring, more data needs to be collected (at least 25 results). • Confounding: a third variable that was failed to be taken into account had
- an influence between the two variables being tested (i.e. ice cream sales are impacted by another variable; the time of year, which will have an effect on the number of deaths due to drowning in the summer months).
- It also works in reverse; just because two variables have a weak correlation, due to coincidence and confounding, the two variables may in fact have a strong observable relationship in reality.

SEQUENCES

Arithmetic and Geometric Sequences Formulae						Growth or Dec	ay Sequences Formula	e	
Type	Explicit	Recursive	Sum of Series	Sum to Infinity		Туре	Explicit	Recursive	
Arithmetic	$T_n = a + (n-1) d$	$T_{n+1} = T_n + d$	$S_n = \frac{n}{2} (2a + (n-1)d)$	$S_{\infty} = \infty \text{ or } -\infty$		Growth	$P_t = a \left(1 + r \right)^t$	$P_{t+1} = (1+r) P_t$ $P_t = q$	
(+ 0.)		$I_1 = a$	-			(•)			
Geometric (× or ÷)	metric or \div) $T_n = ar^{n-1}$ $T_{n+1} = T_n \times r$ $T_n = a$ $S_n = \frac{a(1-r)}{1-r}$		$S_n = \frac{a\left(1-r^n\right)}{1-r}$	$S_{\infty} = \frac{a}{1-r}$		Decay (–)	$P_t = a (1-r)^t$	$P_{t+1} = (1-r) P_t$ $P_1 = a$	
T_n : n^{th} term in the sequence r : common ratio between terms S_n : sum of the first a a : first term in the sequence (i.e. T_1) d : common difference between terms S_{∞} : sum of all possi				rms in the sequence terms in the sequence		r : rate of growth P_t : population a	n or decay (as a decimal) t time t	<i>a</i>: initial amount (i.e. P₁)<i>t</i>: time in years	
Arithmetic Sequence ExamplesSome values of an arithmetic sequence are shown in the table below:Geometric Sequence Examples Some values of a geometric sequence shown in the table below: n 456 T_n 21.524.226.929.6Find the explicit rule for the n^{th} term.Find the explicit rule for the n^{th} term.Find the explicit rule for the n^{th} term.		uence Examples a geometric sequence are oble below: 4 5 6 2 8 32 Final for the n^{th} term. Final for the number of the second secon	Recurrence Relation E A recurrence relation is $T_{n+1} = aT_n + b$ for som Find the recurrence rel where the first three ter $3 \times a + b 4$ From diagram above, o that links T, with T, and	xamp define ation ms are xa create	Bouncing Ball Formulae Below are shortcut formulae for the geome sequence that models a ball dropped from initial height a bounce: xa + b 7 bate two equations with T _a . Bouncing Ball Formulae Below are shortcut formulae for the geome sequence that models a ball dropped from initial height a bouncing at r% efficiency. Ball height after n th bounce: Height = ar ⁿ Total vertical distance travelled (S_{∞}): Distance = a $\left(\frac{1+r}{r}\right)$				
Calculating a : $a = 1$ Calculating d : $d =$ Substitute values in Hence, $T_n = 13.4 +$ Find the recursive I From above, $a = 1$ Substitute values in	termine a and d: g a: a = 21.5 - (3×2.7) = 13.4 g d: d = 24.2 - 21.5 = 2.7 values into $T_n = a + (n - 1)$ d = 13.4 + $(n - 1) \times 2.7$ termine $T_n = 13.4$ and $r = 2.7$ re, a = 13.4 and $r = 2.7re = 13.4$ and $r = 13.4$ and $r = 2.7re = 13.4$ and $r = 13.4$ and r		Equation 1 Equation 2 $r_1 = 0.03125$ and $r = 4$ $r_n = ar^{n-1}$ $3125 \times 4^{n-1}$ verule for the $(n + 1)^{th}$ term. = 0.3125 and $r = 4so into T = T \times r, T = a$	that links T_1 with T_2 and T_2 with T_3 . $T_2 = aT_1 + b \rightarrow 4 = 3a + b \dots Equation 1$ $T_3 = aT_2 + b \rightarrow 7 = 4a + b \dots Equation 2$ Using ClassPad, solve Equation 1 and Equation 2 to find a and b: $a = 3$ and $b = -5$ Substitute into $T_{n+1} = aT_n + b$, $T_1 = 3$ Hence $T_{n+1} = 3T_n - 5$, $T_1 = 3$			Distance = $a\left(\frac{1}{1-r}\right)$ Vertical distance travelled up to n^{th} bounce: Distance = $a\left(\frac{1+r-2r^n}{1-r}\right)$ r: bounce common ratio (as a decimal) a: drop height n: number of bounces		
Hence, $T_{n+1} = T_n + T_n$	$2.7, T_1 = 13.4$	Hence, $T_{n+1} = 4$	$4T_n, T_1 = 0.03125$	Long Term Steady Sta	nte So	Solution Find the long term steady state solution for the accuracy $T_{\rm eff} = 0.9T + 24$, $T_{\rm eff} = 106$			
Simple Interest For I = PRT [A: amount (principal P: principal (startin	ormulaeS $A = I + P$ Nal plus interest)Gg amount)G	imple Interest Examp oah purchased an iPho ard that charges <u>19.8°</u> 0 th of March. He paid th	le ne worth \$600 using his credit <u>% p.a.</u> simple interest on the re account on the <u>11th of April.</u>	 Two methods to find str Substitute T_{n+1} and Using ClassPad Se for a large value of consistency. 	eady s T _n wit quenc n (e.g	state solution: h <i>T</i> and solve for ses App, find a t h. T_{50}) and look f	the sequence T_{n+1} • Solving: $T = 0$. erm • ClassPad Sequence $T_{30} = 120.0941$ which approac	$L = 0.8T_n + 24, T_1 = 196$ 8T + 24 gives $T = 120uences App:and T_{50} = 120.0011hes 120$	
I: total amount of in R: interest rate (as T: time in years	a decimal)	/hat is that total interes = $PRT = 600 \times 0.198 \times 1000$ /hat is the total amount	$\frac{13}{365} = 4.23 $\frac{1000}{1000} = 10000000000000000000000000000000$	Compound vs. Simple Interest	Cor Oliv \$1,1 mor	npound Interes er borrowed 20 to pay off th nthly. Find the re	t Example \$50,000 and makes he loan. Interest is 12% currence relation that sho	monthly repayments of p.a. compounding ows amount owing.	
Compound Interest $A = P\left(1 + \frac{r}{n}\right)$	st Formulae $\begin{bmatrix} I \\ I \end{bmatrix} \begin{bmatrix} I \\ -P \end{bmatrix}$	Compound Interest Recurrence Relation		a linear pattern (meaning that interest is constant	A _{n+}	$= \left(1 + \frac{0.12}{12}\right)A_n - 1120, A_0 = 50000$			
A: amount (principa P: principal (startin I: total amount of in r: annual interest r: n: number of times compounded per y t: time in years	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		overtime). Compound interest has an exponential pattern (meaning that interest increases overtime).	<u>How much does Oliver still owe after two years?</u> $A_{24} = \$33,276.45$ <u>How much interest is charged during this period?</u> To calculate total interest, use formula: $I = A - P$ Total paid off loan = 50000 - 33276.4 = \$16,723.55 Total repayments = $1120 \times 24 = \$26,880$ Total interest = $26880 - 16723.55 = \$10,156.45$					

t: time in years

EXTRA NOTES AND EXAMPLES