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A Universal Formula for Network Functions 

STIG SKELBOE 
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Abstract--A linear electrical network can be described in a convenient 
way by means of the node equations. This letter presents a universal 
formula which expresses any network function as the quotient of two 
determinants. The determinants belong to matrices derived from the 
indefinite nodal admittance matrix z 

Fig. 1. 

I. INTRODUCTION 

z(C, + C,) matrix K after the analogous column operation 
Y the determinant of r 
KS the cofactor of element y,, in r. 

The main objective of an analysis of a linear circuit is to obtain 
some information on a network function. Analysis programs, 
such as ECAP [l 3, compute the modulus and argument of a 
network function frequency by frequency. Other programs, 
such as CORNAP [2], [3] and ANP3 [4], compute the poles, 
zeros, and gain factor of a network function. This approach is 
advantageous when a large number of points are wanted on a 
frequency response curve. The placing of the poles and zeros 
is also of great interest in many problems; for example, in filter 
design. 

No renumbering is performed when rows or columns are deleted. 
The operations previously given may appear in different 

combinations, e.g., Y(R, + R,, C, + C,)::: perform the row 
operation R, + Rq, the column operation C, + C,, delete rows 
s and p, and delete columns s and r. Compute the determinant. 

III. THE GENERAL FORMULA 

A characteristic for programs like CORNAP and ANP3 is 
that the poles and zeros are computed directly by means of 
eigenvalue techniques. The addition and subtraction of poly- 
nomials and computation of roots is thus avoided, and it should 
be avoided as it can give rise to serious numerical instability [5]. 

z (the indefinite admittance matrix) is modified as follows. 
1) Perform the row operation R, + RQ and the column 

operation C, + C,. 

CORNAP and ANP3 are representative of the state-variable 
analysis formulation and the nodal analysis formulation, 
respectively. The state equations are difficult to establish but 
straightforward to solve, and conversely, the nodal equations are 
easily formulated but more difficult to solve. 

2) Delete row s and column s. 
3) For a voltage source, delete row p and column p. For a 

current detector, delete row r and column r. 
The determinant of the final matrix is the denominator of the 

network function. 

Numerator 

A circuit containing no inductors has an indefinite admittance 
matrix [6] of the form z = E + ss, where s is the complex 
frequency (inductors may be included by gyrator-capacitor 
simulation). Any network function H(s) can be computed from 
the first and second cofactors of z. The two-sets-of-eigenvalues 
technique [7] requires, however, that H(s) can be expressed 
as the ratio of the determinants of just two matrices which are 
linear in s. This problem has been partly solved in [8] which 
gives formulas for the network functions &r, V2r, and Zll 
(= l/Y, r). The results from [8] have been utilized in the analysis 
program NAPPE [9], where it is possible to retain some of the 
parameters as symbols. 

y is modified as follows. 
1) The same as 1) for the denominator. 
2) The same as 2) for the denominator. 
3) Delete row p and column r. 
The determinant of the final matrix is the numerator of the 

network function. 

Sign 

The sign is determined by the numerator. Let p’ and r’ be 
the actual row number and column number of row p and column 
r after execution of (2). The sign of the network function is then 
the sign of 

(- l)(P’+r’) 
In the following, we describe a new formula, which is used in 

ANP3 for computation of network functions, including Z,r 
and Yz r, by means of the two-sets-of-eigenvalues technique. The 
matrices, the determinants of which are computed, are, in 
general, different from the corresponding matrices used in [8]. 

The formula is valid also in the following degenerate cases. 
1) node q = node s: three-terminal two-port function; 
2) node q = node s where this node is isolated: one-port 

admittance; and 
3) nodep = node r and node q = nodes: one-port impedance. 

For some source:detector configurations, the universal formula 
leads to superflous row and column operations. These operations 
can be easily avoided, however, in a computer implementation. 

II. DEFINITIONS AND NOTATION 

A network function is defined, by a source/detector configura- 
tion. Fig. 1 shows the network connected to a voltage or current 
source S at nodes p and q, and connected to a voltage or current 
detector D at nodes r and s. The signs and arrows define the 
voltage polarities and current directions assumed in the formula. 

In the following, the notation that will be used is 
yabc... 
=XYZ... matrix g with rows a,b,c, . . . and columns x,y,z, * . . 

deleted 
YrS element at position (r,s) in ,Y 
Y(R, + Rb) matrix Y after the row operation row b: = row = 

6 + roGa 

Manuscript received August 29, 1973; revised February 28, 1974. 
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IV. DERIVATION OF THE FORMULA 

In the derivation, we need the well-known properties of the 
indefinite admittance matrix and the following lemma which is 
valid for a general square matrix. 

Lemma 

For the n x n matrix g where q * s and q + r, we have 

a) K(C, --t C,),, = Kg4 - KW 

and analogously 

b) K(R, + R,),, = Kg, - Krq. 
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v,=vp-v 9 

v2= v, -v, 

a) Assume q c s. K(C, + C,),, and KQ4 are coinputed by 
decomposition after column s, and Kg, is computed by decom- 
position after column q, as seen by the equations 

WC, -, Cs),, = 

Km, - Kc,, = 

q-1 

,& (- 1)‘s-1+“Y,4,‘(Yiq + Yi,) 

+’ 2 (-1ys-1+t-1’ 

l=q+l 
y,“s’(Y*q + Yis) 

( 

q-1 

*& (-wl+i)YgY*s 

As 

* 
Fig. 3. 

Proof: As the relations are quite analogbus, only the first 
one is proved. 

+ ,=$+, (-l)(s-1+~-1)Yq4siyig 
) 

- (- l)‘q+s’ 
( 
z; (- l)(*+Q)y$yiq 

’ ,q$+l (-1)(‘+q-“y,4,‘yiq 
1 

. 

Y,” = LsQql 

- (- p+y _ l)“+q) = -(-l)(s+f) e (-l)(s-l+o 

and 

_(_l)(cl+s)(_l)(i+q-l) * -(-1)“+s-l’ I (-p-‘+L-l) 

we have K(C, + C,),, = Kqq - K,,. 
b) Assume q > s. In this case, the cofactors of the decom- 

position change signs, and the proof is unchanged. 

Transfer Function Z2 1 

fn Fig. 2, node p, q, r, and s are different (two-port function), 
or node q = node s (three-terminal two-port function). Note 

,yy = (0;~~,z;~~,-z;~~,0)=. 

Perform the row operation R, + R, such that 

g(Rp + R,):E = (O;**; ;~~,O;~~,O)=. 

Cramer’s rule gives 

Y(R, --f R,, C, --t C,);; 
= (-')("+") Y(R, + R,, C, --f C) 

(1) 
qs 

where p’ and r’ are row number and column number of row p 
and column r after removal of row s and column s. 

Transfer Function V, i 

V2 
vz z -%l y,,=-=,=- 

v, K zo 
(see Fig. 2). 

T 

Cramer’s rule gives 
z = KPP - KP4 

0 
Y(Rp -+ Rq): 

whefe K is a cofactor of the matrix z(R, + R,x. The lemma 
gives 

v,, = (- lp’fr’) Y(R, + Rq)“,; 

Y(Rp --f R,, C, --* C,>s,; 

(2) 

Transfer Function I, 1 

Add yL to the original circuit, as seen in Fig. 3. Y, modifies 
Yin four places, as seen by ~ 

Yrr + YL Yrs - YL 
p’ = 

Ysr - YL Yss + YL 1 
Z 21 

1=-z- ; _ (- l)(P’+r’) Y(R, -t RX 

Y(R, --) R,): + jy,Y(R, --) Rq):: 

Z v2 Zzl’ = L = - 
Z 

z YL = ZZl’YL 

Zzl = lim Zzl’ = (-l)(p’+“) Y(R, + Rq):; 
YL-’ c.2 Y(R, --t RqX: 

Transfer Function Y2 , 

See Fig. 3 and note 
IL 

Y = lim fr, = lim - = I 121 
21 

Y&+03 v, YL-rm v, z 

T 

(3) 
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Fig. 4. 

where 

z, = Y(RP -+ R@, C, -+ c,):;: 

’ Y(R, + RqX: 

The removal of row and column r means that node r is grounded 
and thus connected to node s. 

y,, = +A = (-l)(~'+r') Y(R, -) Rg, Cp -+ C,>$ : (4) 
s Y(R, + 4, C, + CQXf,: 

One-Port Impedance Z1 1 

Cramer’s rule gives immediately 

Z V YQP 
11 = ‘=4p 

Z v 
(see Fig. 2). 

This expression is equal to (1) when nodep = node r and 
node q = node s. 

One-Port Admittance Y, 1 

Note 

Compute YZ1, according to (4), as the transfer function from the 
nodes p and q to the nodes r and s, as seen by 

y,, = (- 1)'p'+"' Y’(Rp --f R,, cp --) 'Q>$' 

Y’(R, + R,, cp -+ cQx: 
(see Fig. 4). 

(6) 
z’ is derived from E by adding a zero row and a zero column 
corresponding to node q (= node s). That is, II,‘” = Y, and 
furthermore; (- l)p”“Y;:p = Y,l because all c&factor; of Y 
are equal. (This is a well-known property of the indefinite nod2 
admittance matrix.) Analogously, we have Yi$? = Yii, and 
thus Y, 1 = Y, 1 in the case of Fig. 4. This completes the .proof 
of the universal formula stated in Section III. 

v. CONCLUSION 

The formula has lead to a very efficient organization of the 
twoiets-of-eigenvalues circuit analysis program ANP3 developed 
at the Technical University of Denmark. 
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Tree Graphs and Tree Numbers 

M. S. KRISHNAMOORTHY AN0 NARSINGH DE0 

Abstract--The concept of the tree graph of a given connected graph 
was first introduced and studied by Cummins [2]. Further properties of 
tree graphs were explored in [l], [6]-[lo]. 

In this correspondence, some additional properties of tree graphs are 
brought out. A related concept of tree numbers is introduced and explored. 

We shall consider only graphs that are nonnull, finite, un- 
directed, connected, and simple (i.e., graphs without self loops 
and parallel edges), because what follows makes sense only for 
such graphs. Let G’ = (V,E) denote a finite, undirected, con- 
nected, simple graph with vertex set V and edge set E. The tree 
graph T(G) = (V’,El) of G is defined as follows. There is a 
one-to-one correspondence between the spanning trees of G and 
the vertices of T(G) such that two vertices in graph T(G) are 
adjacent, if and only if the corresponding spanning trees in G 
are at a distance of one.’ The properties of tree graph were 
studied by Kamae [6], Kishi and Kajitani [7]-[9], Amoia and 
Cottafava [l 1, and Malik [lo]. The motivation behind these 
studies has been the relevance of tree graph to generation of all 
spanning trees of G and to central trees of G [3], [4]. 

It has been shown [2] that for any given connected graph G, 
there exists a tree graph T(G), which is also connected. Further- 
more, T(G) always has at least one Hamiltonian circuit. A 
center of T(G) corresponds to a‘central tree. 

Using Harary’s [S] terminology, we denote the complete 
graph of n vertices by K, and the circuit of n vertices (i.e., the 
n-gon) by C,. Let the usual symbol _N denote the isomorphism 
between two graphs. Then we obtain the following results. 

PROPERTIESOFTREEGRAPHS 

Lemma I 

The tree graph T(G) of a graph G is isomorphic to G, if and. 
only if G is KS. 

Proof: If G is KS, it clearly has three spanning trees, each 
at a unit distance from the other two, and therefore, T(K,) N K3. 
To prove the “only if” part let. G be a graph such that T(G) 1: G, 
and let n be the number of vertices in G as well as in T(G). Since 

Manuscript received October 12, 1973. 
The authors are with the Deuartment of Electrical Enaineeiinrr and 

Computer Centre, Indian Institut; of Technology, Kanpur-l& U.P., india. 
1 It is well known that the distance between two spanning trees d(i,,t,) is 

defined as the number of edges present in one spanning tree but not in the 
other. In other words, 

d(t,,t,/) = l/2 Iti 0 tl 

where 0 denotes the symmetric difference of sets, and I ) denotes the 
cardinality. That this distance among spanning trees of a given graph 
satisfies the usual metric properties can be easily seen. 


