


## **TRIAL TEST 2- SOLUTIONS**

| Part 1 - Multiple Choice | - 10 marks            |
|--------------------------|-----------------------|
| Part 2 - Short Answer    | - 20 marks            |
| Part 3 - Calculations    | - 15 marks            |
| Part 4 - Extended Answer | - 5 marks             |
|                          | Part 2 - Short Answer |

## Part 1 - Multiple Choice (1 mark per question)

- 1. A solution may best be described as
  - (a) a pure substance of constant composition.
  - (b) two elements combined in variable proportions.
  - (c) a homogeneous mixture of uniform composition.
  - (d) a substance which can be purified by filtration.
  - (e) a heterogeneous mixture of variable composition.
- 2. Gases most easily dissolve in water at
  - (a) low temperature and low pressure.
  - (b) low temperature and high pressure.
  - (c) high temperature and low pressure.
  - (d) high temperature and high pressure.
  - (e) none of the above.
- 3. A quantity of sodium chloride is added to water in a beaker and stirred briskly for several minutes. The mixture is allowed to settle and appears as a clear colourless liquid with some white crystals at the bottom as illustrated. It would be true to say that



- (a) the clear liquid is a saturated solution.
- (b) a little more water is needed in order to produce a saturated solution.
- (c) adding more salt and heating would produce a saturated solution.
- (d) the clear liquid is a supersaturated solution.
- (e) cooling the solution would make it more concentrated.
- 4. Adding some salt to water will affect its properties. It would be true to say that the salt would
  - (a) raise the water's vapour pressure.
  - (b) raise the water's boiling point.
  - (c) raise the water's freezing point.
  - (d) lower the water's boiling point.
  - (e) allow water to freeze more easily.

5. Approximately equal volumes of the two solutions in the following pairs of solutions listed at right are mixed together. All solutions are  $0.1 \text{ mol } \text{L}^{-1}$ .

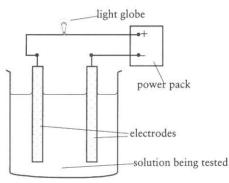
| $Pb(NO_3)_{2(aq)}$                  | and                                                                             | $Na_2CO_{3(aq)}$                                          |
|-------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|
| NaCl <sub>(aa)</sub>                | and                                                                             | $AgNO_{3(aa)}$                                            |
| $BaCl_{2(aa)}$                      | and                                                                             | $Na_2SO_{4(aq)}$                                          |
| NH <sub>4</sub> NO <sub>3(aq)</sub> | and                                                                             | $KCl_{(aq)}$                                              |
| $MgCl_{2(aq)}$                      | and                                                                             | $(NH_4)_2SO_{4(aq)}$                                      |
|                                     | $Pb(NO_3)_{2(aq)}$ $NaCl_{(aq)}$ $BaCl_{2(aq)}$ $NH_4NO_{3(aq)}$ $MgCl_{2(aq)}$ | $NaCl_{(aq)}$ and $BaCl_{2(aq)}$ and $NH_4NO_{3(aq)}$ and |

A precipitate will form in

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i), (ii) and (iii) only.
- (d) (i), (ii) and (iv) only.
- (e) (iii) and (v) only.
- 6. Which of the following equations correctly expresses the dissolving of barium chloride in water?

(a) 
$$BaCl_2(s) + H_2O \longrightarrow BaCl_2(aq)$$

(b) 
$$\operatorname{BaCl}_{2}(s) \longrightarrow \operatorname{Ba}^{2+}(aq) + 2\operatorname{Cl}^{-}(aq)$$


(c) 
$$BaCl_2(s) + H_2O \longrightarrow BaCl^+(aq) + Cl^-(aq)$$

(d) 
$$BaCl_2(s)$$
  $\longrightarrow BaCl^+(aq) + Cl^-(aq)$ 

- (e)  $BaCl_2(s) \longrightarrow BaCl_2(aq)$
- 7. Conductivity tests were carried out using the apparatus shown at right.

Test A - beaker contains distilled water. When hydrogen chloride gas is bubbled through it the globe begins to glow brightly.

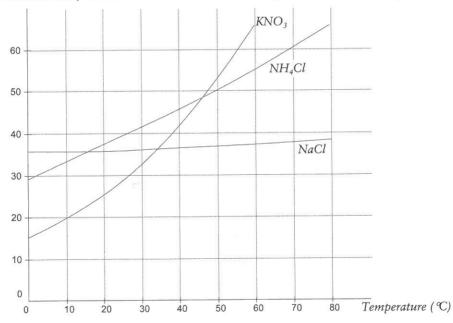
Test B - beaker contains ethanol. When hydrogen chloride gas is bubbled through it the globe does not glow.



Which of the following best explains these observations?

- (a) Electrons are able to flow through an aqueous solution of  $HCl_{(g)}$  but not through an ethanol solution of  $HCl_{(g)}$ .
- (b) Distilled water is a good conductor of electricity whereas ethanol is not.
- (c) Water molecules are more easily ionised than ethanol molecules.
- (d) There are a greater number of  $HCl_{(g)}$  molecules in the water than there are in the ethanol.
- (e)  $\mathrm{HCl}_{(g)}$  dissolves in water to form charged particles whereas in ethanol it remains as neutral molecules.
- 8. Conductivity apparatus similar to that in question 7 is used to test the conductivity of the following solutions. In which case will the globe glow brightest?
  - (a) 100 mL of 2.0 mol  $L^{-1}$   $HCl_{(aq)}$
  - (b) 300 mL of 1.0 mol  $L^{-1}$  HCl<sub>(aq)</sub>
  - (c) 100 mL of 2.0 mol  $L^{-1}$   $H_2CO_{3(aq)}$
  - (d) 300 mL of 1.0 mol  $L^{-1}$   $H_2CO_{3(aq)}$
  - (e) 200 mL of 2.0 mol  $L^{-1}$  CH<sub>3</sub>COOH<sub>(aa)</sub>

- 9. Which of the following statements is INCORRECT?
  - (a) Rainwater is always a little acidic due to the presence of carbon dioxide gas in the atmosphere.
  - (b) Carbon dioxide gas in the atmosphere is a factor in the formation of underground caves.
  - (c) Temporary hardness in water can be removed simply by boiling the water.
  - (d) Permanent hardness in water is caused by the presence of carbonate ions.
  - (e) Distilled water has a greater purity than deionised water.
- 10. If 2.0 mg of sodium chloride crystals were dissolved in 100 mL of distilled water which of the following would most correctly describe the solution? Assume density of the resulting solution to be 1.0 g mL<sup>-1</sup>.
  - (a) A 2.0% salt solution.
  - (b) A 20  $gL^{-1}$  salt solution.
  - (c) A  $2.0 \times 10^{-4}$  mol L<sup>-1</sup> salt solution.
  - (d) A  $0.348 \text{ mol } L^{-1} \text{ salt solution.}$
  - (e) A 20 ppm salt solution.


## **END OF PART 1**

Part 2 - Short Answer

Answer each question in the space provided beneath the question.

11. Use the graph of solubility shown to answer the following. Show all working.

Solubility (g/100g water)



- (a) What is the maximum amount of NaCl that can be dissolved in 5.0 kg of water at 20°C?
- (b) 100 g of NH<sub>4</sub>Cl were dissolved in 250 g of warm water. To what temperature must this solution be cooled if crystals are to form?

| -                  |                                                                                                                                                                                                                                                                                                                                                                                    | 16                    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                    | [6 marks <sub>]</sub> |
| Writ               | te balanced ionic equations and describe what would be observed when:                                                                                                                                                                                                                                                                                                              |                       |
| (a)                | sodium sulfate solution is mixed with barium hydroxide solution.                                                                                                                                                                                                                                                                                                                   |                       |
|                    | tion:                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                    | rvation:                                                                                                                                                                                                                                                                                                                                                                           |                       |
| (b)                | , ,                                                                                                                                                                                                                                                                                                                                                                                |                       |
|                    | tion:                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                    | rvation:                                                                                                                                                                                                                                                                                                                                                                           |                       |
| (c)                | a few drops of silver nitrate are added to household tap water.                                                                                                                                                                                                                                                                                                                    |                       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|                    | tion:                                                                                                                                                                                                                                                                                                                                                                              |                       |
|                    | rvation:                                                                                                                                                                                                                                                                                                                                                                           |                       |
| obser              | rvation:                                                                                                                                                                                                                                                                                                                                                                           | [3 marks]             |
| obser              | rvation:                                                                                                                                                                                                                                                                                                                                                                           |                       |
| obser              | rvation:                                                                                                                                                                                                                                                                                                                                                                           |                       |
| obser              | fly explain what is meant by a saturated solution.                                                                                                                                                                                                                                                                                                                                 |                       |
| obser<br>Brief     | fly explain what is meant by a saturated solution.                                                                                                                                                                                                                                                                                                                                 | [3 marks]             |
| Brief              | fly explain what is meant by a saturated solution.                                                                                                                                                                                                                                                                                                                                 | [3 marks]             |
| Brief              | fly explain what is meant by a saturated solution.                                                                                                                                                                                                                                                                                                                                 | [3 marks]             |
| Brief (a)          | fly explain what is meant by a saturated solution.                                                                                                                                                                                                                                                                                                                                 | [3 marks]             |
| Brief (a)          | fly explain what is meant by a saturated solution.  Briefly describe what is meant by an electrolyte.                                                                                                                                                                                                                                                                              | [3 marks]             |
| Brief (a) (b)      | fly explain what is meant by a saturated solution.  Briefly describe what is meant by an electrolyte.  List each of the following as either strong, weak or non-electrolytes. $C_{12}H_{22}O_{11}$ (sugar), $K_2CO_3$ , $NaCH_3COO$ , $H_3PO_4$ , $MgSO_4$ , $H_2O$ ,                                                                                                              | [3 marks]             |
| Brief<br>          | fly explain what is meant by a saturated solution.  Briefly describe what is meant by an electrolyte.  List each of the following as either strong, weak or non-electrolytes. $C_{12}H_{22}O_{11}$ (sugar), $K_2CO_3$ , $NaCH_3COO$ , $H_3PO_4$ , $MgSO_4$ , $H_2O$ , $NH_3$ , $H_2CO_3$ , $CH_3CH_2OH$ (ethanol)                                                                  | [3 marks]             |
| Brief<br>          | fly explain what is meant by a saturated solution.  Briefly describe what is meant by an electrolyte.  List each of the following as either strong, weak or non-electrolytes. $C_{12}H_{22}O_{11} \ (sugar) \ , K_2CO_3 \ , NaCH_3COO \ , H_3PO_4 \ , MgSO_4 \ , H_2O \ , NH_3 \ , H_2CO_3 \ , CH_3CH_2OH \ (ethanol)$ strong electrolytes:  weak electrolytes:  non-electrolytes: | [3 marks]             |
| obser              | fly explain what is meant by a saturated solution.  Briefly describe what is meant by an electrolyte.  List each of the following as either strong, weak or non-electrolytes. $C_{12}H_{22}O_{11} \ (sugar) \ , K_2CO_3 \ , NaCH_3COO \ , H_3PO_4 \ , MgSO_4 \ , H_2O \ , NH_3 \ , H_2CO_3 \ , CH_3CH_2OH \ (ethanol)$ strong electrolytes:  weak electrolytes:  non-electrolytes: | [3 marks]             |
| (a) (i) (ii) (iii) | fly explain what is meant by a saturated solution.  Briefly describe what is meant by an electrolyte.  List each of the following as either strong, weak or non-electrolytes. $C_{12}H_{22}O_{11} \ (sugar) \ , K_2CO_3 \ , NaCH_3COO \ , H_3PO_4 \ , MgSO_4 \ , H_2O \ , NH_3 \ , H_2CO_3 \ , CH_3CH_2OH \ (ethanol)$ strong electrolytes:  weak electrolytes:  non-electrolytes: | [3 marks]             |

**END OF PART 2** 

Part 3 - Calculations Show working in the space provided beneath the question.

| moles per litre                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                           |
| [4 mark                                                                                                                                                                                                                                   |
| 0 kg sample of sea water was evaporated to dryness and 155.5 g of solids remaine late the concentration of the solids in:  % by mass                                                                                                      |
|                                                                                                                                                                                                                                           |
| ppm                                                                                                                                                                                                                                       |
| [4 mark                                                                                                                                                                                                                                   |
| mL of 2.00 mol L <sup>-1</sup> Pb(NO <sub>3</sub> ) <sub>2(aq)</sub> solution is added to 200 mL of 2.50 mol L <sup>-1</sup> NaCl ion. A reaction occurs as follows. $Pb(NO_3)_2(aq) + 2NaCl(aq) \longrightarrow PbCl_2(s) + 2NaNO_3(aq)$ |
| rmine: moles of Pb(NO <sub>3</sub> ) <sub>2(aq)</sub> used.                                                                                                                                                                               |
| moles of NaCl <sub>(aq)</sub> used.                                                                                                                                                                                                       |
| the mass of lead (II) chloride produced.                                                                                                                                                                                                  |
| the concentration of the Na <sup>+</sup> ions in the final solution.                                                                                                                                                                      |
| nii                                                                                                                                                                                                                                       |

# Part 4 - Extended Answer

| associated with | d water is chemicall<br>its use and how ha | rd water may be | softened. Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | equations v                   |
|-----------------|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| appropriate.    |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            | or to an ex-    | - 11 21 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
|                 | 14.                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| -               |                                            |                 | 21 N 12 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 | <u> </u>                                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 | 0117 Marco (Marco) (Ma |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                         |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            | - Paner III     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 2               |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 - 2000<br>- 1000<br>- 1000 |
|                 | 1-11-11-11-11-11-11-11-11-11-11-11-11-1    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                             |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 | - 11                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                 |                                            | 575             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| -               | 11 11 11 11 11 11                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |

**END OF TEST** 

**TOTAL 50 MARKS** 



# TRIAL TEST 2 SOLUTIONS - Solutions

### Part 1

| 1. | С | 6.  | Ь |  |
|----|---|-----|---|--|
| 2. | b | 7.  | e |  |
| 3. | а | 8.  | b |  |
| 4. | b | 9.  | d |  |
| 5. | С | 10. | e |  |
|    |   |     |   |  |

[10]

## Part 2

- 11. (a) At 20 °C solubility of NaCl  $\approx$  36 g/100 g .: mass (NaCl) in 5.0 kg  $\approx 36 \times 5000/100 \approx 1800 \text{ g or } 1.8 \text{ kg}$ 
  - (b) 100 g/250 g = 40 g/100 g:: crystals of NH<sub>4</sub>Cl appear ≈ 27 °C
  - (c) At 10 °C solubility of KNO₂  $\approx 20 \text{ g}/100 \text{ g}$  ie.  $\approx 40 \text{ g}/200 \text{ g}$ : mass (KNO3) that will ppt  $\approx 100 - 40 \approx 60 \,\mathrm{g}$ [6]
- 12. (a)  $Ba^{2+}(aq) + SO_4^{2-}(aq) \longrightarrow BaSO_4(s)$ A white precipitate forms.
  - (b)  $Ca(HCO_3)_{2(aq)} \longrightarrow$  $CaCO_3(s) + H_2O(l) + CO_2(g)$ A white precipitate (sediment) forms.
  - (c)  $Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$ A white precipitate forms. [3]
- 13. A saturated solution is a solution that contains as much dissolved solute as is possible to dissolve at that temperature. [2]
- 14. (a) Electrolytes are substances which form ions in aqueous solutions.
  - (b) (i)  $K_2CO_3$ ,  $NaCH_3COO$ ,  $MgSO_4$ (ii)  $H_3PO_4$ ,  $NH_3$ ,  $H_2CO_3$ ,  $H_2O$ (iii) C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>, CH<sub>3</sub>CH<sub>2</sub>OH [5]
- 15. CO<sub>2(g)</sub> in the atmosphere dissolves in rain water forming a slightly acidic solution. This reacts with limestone (CaCO<sub>3</sub>) to form soluble Ca(HCO<sub>3</sub>)<sub>2</sub>. Hence the presence of  $Ca^{2+}$  ions.

$$CaCO_3(s) + H_2O(l) + CO_2(g) \longrightarrow$$

$$Ca^{2}$$
 +  $(aq)$  +  $2HCO_3$  <sup>2 -</sup>  $(aq)$  [4]

16. (a) 
$$c(BaCl_2) = \frac{2.55 \text{ g}}{0.250 \text{ L}} = 10.2 \text{ g L}^{-1}$$

16. (b) 
$$n(BaCl_2) = \frac{m}{M} = \frac{2.55}{208.2}$$
  
=  $1.224 \times 10^{-2} \text{ mol}$   
 $c = \frac{n}{V} = \frac{1.224 \times 10^{-2}}{0.250} = 0.0490 \text{ mol } L^{-1}$ 

17. (a) % by mass = 
$$\frac{155.5 \text{ g}}{5000 \text{ g}} \times 100 = 3.11\%$$

(b) 
$$ppm = \frac{155500 \text{ mg}}{5.0 \text{ kg}} = 3.11 \times 10^4 \text{ ppm}$$
 [4]

18. (a) 
$$n = cV = (2.00)(0.200)$$
  
= 0.40 mol Pb(NO<sub>3</sub>)<sub>2</sub>  
(b)  $n = cV = (2.50)(0.200)$   
= 0.50 mol NaCl

(c) from eqn 1 mol Pb(NO<sub>3</sub>), reg 2 mole NaCl .: NaCl is limiting reagent  $\therefore n(PbCl_2) = (\frac{1}{2})(0.50) = 0.25 \text{ mol}$  $m(PbCl_2) = (0.25)(278.1) = 69.5 g$ 

(d) 
$$c = \frac{n}{V} = \frac{0.50}{0.40} = 1.25 \text{ mol } L^{-1}$$

[7]

### Part 4

- 19. Unlike soft water, hard water contains significant amounts of Ca2+ and/or Mg2+ ions.
  - Hard water is not suitable for washing as it reacts with soap to form scum. Hard water also forms a scale when used in kettles and boilers. This scale consists of CaCO3 and/or CaSO4 and can cause blockages.
  - Hard water may be softened by - boiling if it is temporary hardness. This removes the Ca<sup>2+</sup> ions. -  $Ca(HCO_3)_2(aq)$  boiled

CaCO<sub>3</sub>(s) + CO<sub>2</sub>(g) + H<sub>2</sub>O(l)  
- adding washing soda (Na<sub>2</sub>CO<sub>3</sub>.  
10H<sub>2</sub>O). This also removes the Ca<sup>2+</sup>  
and /or Mg<sup>2+</sup> ions.  
Ca<sup>2+</sup>(aq) + CO<sub>3</sub><sup>2-</sup> 
$$\longrightarrow$$
 CaCO<sub>3</sub>(s)  
- water softeners are also able to remove

Ca<sup>2+</sup> and/or Mg<sup>2+</sup> ions from water.

[5]

**MARKS** 

Total = 50