AIAR	Chemist	•	Γest ∂: Inte	rmole	cular Force	s and G	ases	Weig	htin	g 4%
ame:	/	Soln	î.	-					Mar	k /
ection	1: Multi _l	ole Ch	oice							(12 marks)
nswer	all questi	ons on	the separa	te Mult	iple Choice	Answer	Sheet.			
. A:	ection of	the pe	eriodic table	is sho	wn below. ⁻	The syml	ools for	the ele	emer	nts are fictitious.
		1 2	2				13 14	15 16	3 17	18
]]:	,						W	y
									+	
									<u> </u>	
									X	2
				1						
		<u>'</u>								
			the highest	_						
(a)	U	((b) V	9	∜ W	(d)	X			
In	which of	he foll	owing subs	tances	would hydr	ogen bo	nding o	ccur?		
	I HF	1	T NILI	T	n u i	V UC.				
(a)		ı III onl	II NH₃	1.	II H ₂ I	V HCE				
(a) (b)			v Vonly							
(c)		III or	•							
000		II only	•							
10/1	iah af th	- fallau	uina haat au	ممنمام	the differen	in h-i	lina nai	-4£	1100	UD- and U
			tive boiling					nis or i	ΠCŧ,	HBr and HI,
X	The s	_	•		es increase	s as the	numbe	er of el	ectro	ons present
(1-1			e increases							
(b)			i of nydroge e increases		ing increas	es as the	e numb	er or e	ectr	ons present
(c)			es become	more p	olar as the	number	of elect	rons p	rese	ent
	increa	ses.	HU?	> HB	4> HI	in po	lainty			
(d)			n of hydroge e increases		ds decrease	es as the	numbe	er of ele	ectro	ons present
	🗸	Oloodii	5 II 101 04000	•						
			of increasin	_					(SiO	0 ₂),
			CH₃), ethan				_			0- 1
(a)			propane		silica	<		anol		JiOz - covaler
X (•		propane				silic			retu
(c) (d)		n <	ethanol helium		propane ethanol		silic silic		ρ	Hopane - dispels
	propa	10	Hendin	_	Gulario	•		c.i.		1-7-1-6
(u)							SIIIC			
(u)							Silic	 -	li	thanol-H-ben
(4)							Silic		li	SiOz - covaler returned - dispers thought - H-ban the - dispers

 The shapes of many simple molecules can be predicted by the valence shell electron pair repulsion (VSEPR) theory. The VSEPR hypothesis states that: (a) orbitals in the outer shell of an atom stay as far away from each other as possible. (b) bonding pair electrons stay as far away from each other as possible. (c) non-bonding pair electrons stay as far away from each other as possible. (d) both bonding and non-bonding pair electrons stay as far away from each other as possible. 6. Consider the following substances in the molten (liquid) state: I C₁₀H₂₂ II NH₃ III CH₃Cℓ IV N₂ Which of the above substances have only dispersion forces between their molecules? (a) None of the above (b) II and IV only (c) II and III only (d) II and IV only 7. Which of the following is the weakest type of molecular force or bond? (a) Hydrogen bond (b) Dipole-Dipole force (c) Dispersion force (d) Covalent bond 	
(b) bonding pair electrons stay as far away from each other as possible. (c) non-bonding pair electrons stay as far away from each other as possible. both bonding and non-bonding pair electrons stay as far away from each other as possible. 6. Consider the following substances in the molten (liquid) state: I C₁₀H₂₂ II NH₃ III CH₃Cℓ IV N₂ Which of the above substances have only dispersion forces between their molecules? (a) None of the above (b) II and IV only (c) II and III only X I and IV only 7. Which of the following is the weakest type of molecular force or bond? (a) Hydrogen bond (b) Dipole-Dipole force Dispersion force	r
I C₁₀H₂₂ II NH₃ III CH₃Cℓ IV N₂ Which of the above substances have only dispersion forces between their molecules? (a) None of the above (b) II and IV only (c) II and III only I and IV only 7. Which of the following is the weakest type of molecular force or bond? (a) Hydrogen bond (b) Dipole-Dipole force Dispersion force	
Which of the above substances have only dispersion forces between their molecules? (a) None of the above (b) II and IV only (c) II and III only I and IV only 7. Which of the following is the weakest type of molecular force or bond? (a) Hydrogen bond (b) Dipole-Dipole force Dispersion force	
(a) Hydrogen bond(b) Dipole-Dipole forceDispersion force	
· ·	
8. Which of the following is not a unit of gas pressure? (a) mmHg N (c) atm (d) Pa	
 9. Which of the following is true? (a) The molar volume of a gas at STP is 24.5 L. (b) Gas volume is directly proportional to gas pressure. (c) Temperature and gas pressure are inversely proportional. (v) Gas pressure and temperature are directly proportional. 	
10. Kinetic energy of particles in a reaction is a measure of? Temperature (b) Pressure (c) Volume (d) Heat	
11. Which of the following solutions has the lowest freezing point and the highest boiling point (a) 0.100 mol L ⁻¹ sucrose (i) Concent when of pathcles = 0.100 M = 0.150 M (c) 0.050 mol L ⁻¹ NaCl (z) = 0.100 M (d) Distilled water (o)	t?
12. A test tube contains a clear, colourless salt solution. A few drops of lead nitrate solution a added to the solution and a yellow precipitate forms. Which one of the following salts was dissolved in the original solution?	
(b) KCl (c) K2CO3 (d) K2SO4 PbI2 - bright canaly yellow,	

Section 2: Short answer

2.

Answer all questions in the spaces provided.

(31 marks)

1. Complete the following table for the listed molecules. Include any lone pairs of electrons that influence the shape. (7 marks)

Molecule	Electron Dot Diagram	Shape	Dominant Intermolecular Force	•
Cl₂O	× C × O × C × X × X	bert ov V co	Dipole-dipole	
Hydrogen cyanide	H\$ C\$\$N5	linear H-C=N	Depole - dipole [Note: Not H bonders since H not bonders to N.]	
CF4	XX XFX XFX XFX XFX XX XFX XX	totaledial FFFF	To N.] Dispusion forws [Note: each bond is polar but no pet polar	ily
AsBr ₃	ibi: * As x Bi: * Br:	(Irigoral) pytamidal As Br R	Depole - Dipole	d ²
Cℓ₃ ⁺	×X × °°° × XX × ×××××××××××××××××××××××	bent v	Not REQUIRED [Note: Not ion- depole which regules a charged son and a polar	

Briefly explain the following, using diagrams where appropriate:

(a) Some covalent bonds are polar and some are non-polar.

(3 marks)

Polardy depends on the electronegalizery of the atoms

in the molecule.

No more sheet enegative the atom the more it attack

the shared pair of electrons, causing the e-pairs

to be uneverly shared. This results in a polar bond.

Non polar : H: H and **O **: O.: polar : H: CI;

H—H

O=O

H

EC

(b) The molecule boron trich	ioride is non-polar but nitrogen t	richioride is polar. (6 marks)
BCL XXX	Cl,	Shape: plana, Irrangulas
XX X B O XXV	B X (=)	Stape: planas Islangulas and aymetsical
Each of M	bonds is solar	as shown but
thele is r	i bonds is polar, no net-dipole as	all polarities cancel.
NCl3 XX & NoxXX	a N X (3)	Stape: pylamidal (trigon
XX A		(2)
Cach	of the bonds is pole uties do not cancel a ret dipole.	as shown,
but ite pola	ities do not cancel	, due to le love pail,
Alselting in	a ret dipole.	
(c) Gases diffuse quickly. Re	eter to the Kinetic Theory of Gas	es in your answer. (3 marks)
9. Collegions between	are in taped tand	om straight line motion
	n modecules y susta	
Dan Jackson Landa	1.c Theory statement	on to a live
gas Modado	quierup fue me	NManls y Mena
diffuse through	guickly fill the o the a negroin quick	l l
Consider the diagram shown. Two salt solutions of	Semipermeab	le Membrane
differing concentrations are		
placed on either side of a semipermeable membrane.		
The pressure exerted by the different height of the	water	
solution on the right is called	· ·	
the osmotic pressure, π .	(a) 0.1 M 1.0 M	(b)
(a) What is the name of the p	process illustrated?	(1 mark)
Osmosis		
// 2 // // // // // // // // // // // // //		

3.

(b) On the diagram (a) show the name and the direction of movement of the liquid molecules that selectively pass through the membrane. (2 marks)

	 (c) When the osmotic pressure exerted by the different height of the solution on the right is stable, state the concentration of the solutions. (1 mark)
	Re concentrations well be equal at (0.1+10)= 0.55 mole-1
	(d) Give an application of a form of the process illustrated. (1 mark)
	Reverse osmosis is used in desalination of salt water
4.	(3 marks)
	Boding occurs when the vapour pressure of the
	gas in any bubble that town in the liquid
	ata leguels the external pressure acting on it,
	Susially the Patra when in shallow water.
	Vp Vapour pressure depends only on temperature
	On Mt Everest, the Patm is lower > lower V. P => lower temp.
	(b) When pure water is heated, the temperature rises until it begins to boil and the
	temperature remains constant until all the water is evaporated. When a salt solution is heated, the temperature continues to rise even after it begins to boil. Why?
	(3 marks)
	In a salt-solution the BP is Light than for
	pure water. The salt ions form an attraction with the
	water molecules making it more difficult to form
	water vapour bubbles that can rise to the surface
	Since VP depends only on temp, the Ligher VP needed
	to form bubbles requires a higher temp & He water
	to form bubbles sequestes a higher temp. As the water books away the soll be consentated, so even higher temp. (a) Explain how volume of a gas affects pressure at a set temperature. (2 marks) and
5.	(a) Explain how volume of a gas affects pressure at a set temperature. (2 marks) and Boules / a_{M} P $V = c_{M}$ v_{M} v_{M} v_{M} v_{M}
	Boyles Law PY = constant So PXI
	Pressure is due to the collisions of the gas (2)
	pastiles with the walls of the contained. The
	pressure inside the balloon (flixible containe)
	Will cause the contained to expand a increase
	in volume until the internal appropriate (1)
	in volume until the internal pressure equals () the external pressure.
	/

	nitrogen are the only two gases in a container where the total pressure is 450 kPa.
	Because the gas particles are very far apart (2 marks)
	they act it dependently in exciting pressure.
	7 : 3hole → 40kpa
	0_{2} : $1 \text{ nwl} \rightarrow \infty$
	Partal Pressure of Oz = 150 kPa
6.	The vapour pressure for water is 2.34 kPa at 20°C while the vapour pressure of acetone (CH ₃ COCH ₃) is 24.6 kPa at 20°C. Explain what vapour pressure is and why water and acetone have such different values. (5 marks)
	The vapous pressure of a gas is defined as
	the pressure exerted by the vapour when
9as -	in equalibrium with it liquid place at
lequid	a given temp in a closed system
	The greater the strength of the intermolecular forces in
	the liquid the lower the VP Water has H-bounding
	between molecules. Acetone has dipole-dipole forces
	between molecules sice H-bonds are stronger than
	depole-depole forces the VP by H2O < VP by ace love. ion 3: Calculations (and acetone is in more volatile) (16 marks)
Ansv	ver all the questions in the spaces provided. All numerical answers should be given to inflicant figures.
7.	What mass of solid NaOH would be required to prepare 100 mL of a 0.15 M NaOH solution?
	n= cN = 0.15 x 0.100 = 0.015 mel (2 marks)
	N = M / M = N M
	$N = M / M = NM$ $= 0.017 \times (22.99 + 16 + 1.001)$
	= 0.600 g of NaOH.

	Deleter : Noefre = Napter
••••••••••	$C_b V_b = C_a V_a$
	1.50 x 345 = Ca x 250
	Caffer = 2.07 mol L-1
	h water would need to be added to 500 mL of a 2.40 mol L ⁻¹ KCI solution to ma -1 solution? (2 marl
	Delution Nelve - Nafter
	C. V a V
***************************************	CbVb = CaVa.
	2.40 x 500 = 1.0 x (500 + Vadded)
	1200 = 500 + Vadded
•••••	
	1/: 1/
***************************************	Vadded = 700 mL = 0.700L
	ss of carbon dioxide gas will be produced when 5.00 L of propane at STP comb
in plentifu	ss of carbon dioxide gas will be produced when 5.00 L of propane at STP comb air?
in plentifu	ss of carbon dioxide gas will be produced when 5.00 L of propane at STP comb air?
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comboning (5 mark $(3.48 \text{ g}^{\dagger}, 50_2 \text{ g}) \rightarrow 30_2 \text{ g}$ 4470 g M' . Intel $\rightarrow 3$ mol
in plentifu	ss of carbon dioxide gas will be produced when 5.00 L of propane at STP comb air?
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comboning (5 mark $(3.48 \text{ g}^{\dagger}, 50_2 \text{ g}) \rightarrow 30_2 \text{ g}$ 4470 g M' . Intel $\rightarrow 3$ mol
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comboniair? (5 mark $ \begin{array}{cccccccccccccccccccccccccccccccccc$
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comb lair? (5 mark $ \begin{array}{cccccccccccccccccccccccccccccccccc$
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comboning? (5 mark (2 H 8 g + 50 g) \rightarrow 3CO g + 4H 2O g) M'. Intel \rightarrow 3 mol (1 new \rightarrow 3 mol (2 7) \rightarrow 22 71 (2 2 7) \rightarrow 3 co 2 20 2 nol (2 2 7) \rightarrow 3 co 2 20 2 nol (3 H 8 g + 50 g) \rightarrow 3 co 2 20 2 nol (4 new \rightarrow 3 mol
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comboning? (5 mark (2 H 8 g + 50 g) \rightarrow 3CO g + 4H 2O g) M'. Intel \rightarrow 3 mol (1 new \rightarrow 3 mol (2 7) \rightarrow 22 71 (2 2 7) \rightarrow 3 co 2 20 2 nol (2 2 7) \rightarrow 3 co 2 20 2 nol (3 H 8 g + 50 g) \rightarrow 3 co 2 20 2 nol (4 new \rightarrow 3 mol
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comb lair? (5 mark $ \begin{array}{cccccccccccccccccccccccccccccccccc$
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comb lair? (5 mark $ \begin{array}{cccccccccccccccccccccccccccccccccc$
in plentifu	as of carbon dioxide gas will be produced when 5.00 L of propane at STP comboning? (5 mark (2 H 8 g + 50 g) \rightarrow 3CO g + 4H 2O g) M'. Intel \rightarrow 3 mol (1 new \rightarrow 3 mol (2 7) \rightarrow 22 71 (2 2 7) \rightarrow 3 co 2 20 2 nol (2 2 7) \rightarrow 3 co 2 20 2 nol (3 H 8 g + 50 g) \rightarrow 3 co 2 20 2 nol (4 new \rightarrow 3 mol

1. \	What pressure will be exerted by 20.16 g of hydrogen gas in a 7.50 L cylinder at 20.0°C?
	M (2x 1:005)
•	PV= nRT
•	P x 7.5= 10 x 8.314 x /273.15+20)
	P= 3249.6 kPa = 3250 kPa (354)
ectio	on 4: Extended Answer
nsw	er all questions in the spaces provided. (71 marks)
2. ((a) Write a balanced ionic chemical equation for the reaction when 0.5 mol L ⁻¹ iron (III) sulfate solution and 0.5 mol L ⁻¹ sodium hydroxide solution are mixed. State the expected
	observations. (2 marks)
	$Fe^{3t}(ag) + 30H(eg) \rightarrow Fe(OH)_{3}(S)$
	A brown soln is added to a colourless soln
	^
	r a dust brown ppt forms
((b) When an excess of silver nitrate solution was added to 10.0 mL of sodium chloride solution, 0.780 g of silver chloride was precipitated. (i) Write a balanced ionic chemical equation for the reaction. State the expected observations.
	$Ag^{+}(g) + C(gg) \longrightarrow AgC(g)$
•	Two colourless solv are mixed and a
	1 to Colours and C
	white ppt forms. (The ppt darkens in sunlight)
	(ii) Find the concentration of the sodium chloride solution in mol L ⁻¹ . (3 marks)
	I mal AJU contains I mad Ag'
A	mal Agel contains mal Agt gel: n Agel = M = 0.780 = 0.0054 mol (107.9+35,45) = 0.0054 mol
	(107.9+35,45)
•	***************************************
	Vacl. / mel Nacl soln contains I not al (ag) n = CV . 0.0054 = ((10 x 10 3)
	$n = cV$. 0.0054 = $((10 \times 10))$
	C = 0.5441 molL-1 = 0.544 mol, (351)

13.	Fluo (a)	Frine forms compounds with many other elements. Fluorine reacts with bromine to form liquid bromine trifluoride (BrF_3). State the type of bond between Br and F in BrF_3 and state how this bond is formed.
		Type of bond: Covalent
		How bond is formed: Electron pails are shared
	•••••	(2 marks)
	(b)	Two molecules of BrF ₃ react to form ions as shown by the following equation. $2BrF_3 \longrightarrow BrF_2^+ + BrF_4^-$
		The shape of BrF ₃ is given where the lobes represent lone pairs of electrons.
		(i) Suggest the shape of BrF3. Planal Mangulas F
		(ii) Predict its bond angle.
		/20 (2 marks)
	(c)	BrF ₄ ions are also formed when potassium fluoride dissolves in liquid BrF ₃ to form KBrF ₄ . Explain, in terms of bonding, why KBrF ₄ has a high melting point. (3 marks)
		KBIF4 exhibits 10 rie bonding. It forms an
	•••••	aray of alternating positive regalive ions not
		strong electrostatic bonding between rons This
		strong bonding requires a large amount of heat to disrupt the bond - so the MP is high.
	(d)	Fluorine reacts with hydrogen to form hydrogen fluoride (HF). V
		(i) State the strongest type of intermolecular force between hydrogen fluoride molecules. (1 mark)
		Hydrogen bondsig
		(ii) Draw a diagram to show how two molecules of hydrogen fluoride are attracted to each other by the type of intermolecular force that you stated in part (d) (i).
		Include all partial charges and all lone pairs of electrons in your diagram. (3 marks)
		$H_{X}F_{X} \rightarrow H \stackrel{\longleftrightarrow}{\rightarrow} F$
		(H XXX) H-F

	(e)	The boiling points of fluorine and hydrogen fluoride are –188°C and 19.5°C respectively. Explain, in terms of bonding, why the boiling point of fluorine is very low. (2 marks)
		Fz has only dispusion forces between the
		molecules. Also the F2 molecule is small so
		the dispersion forces are very weak. Heat will
		easily dispupt the bond - so the BP will be very low
		[Note: 16 Fr molecule is larger than the HF
		moleule, so the dispersion forces for E > HF but
		the H-bonding in HF fax exceeds the dispersion town of Fz
14.	The mond	metal lead reacts with warm dilute nitric acid to produce lead (II) nitrate, nitrogen in SH oxide and water according to the following equation.
	3	Pb(s) + 8HNO ₃ (aq) \longrightarrow 3Pb(NO ₃) ₂ (aq) + 2NO(g) + 4H ₂ O(l)
	(a)	In an experiment, an 8.14 g sample of lead reacted completely with a 2.00 mg/dm ⁻³ solution of nitric acid. Calculate the volume of nitric acid required for complete reaction.
	Pb	$n_{M} = M = 8.14 = 0.0393 \text{ nol}$ (3 marks) m = 207.2 (d $m = L$)
(le	25)	$n = 207.2 \qquad \left(dn = L \right)$
	HIN	02: 17 HNO3 = 0.0393 x 8/3 = 0.1048 mol
1	nore)	n=cv· v=n=0.1048 = 0.0524 dig3
		C = 32.4 mL
		(524 cm ³)
	(b)	(i) Determine the number of moles of NO(g) expected to be produced from the
		reaction of 8.14 g sample of lead in (a). (1 mark)

		(ii) The nitrogen monoxide gas produced in the reaction occupied 638 cm³ at 101 kPa and 25°C. The vapour pressure of water vapour at 25°C is 7.31 kPa. Calculate the amount, in moles, of NO gas produced. Hence determine the percentage yield of
	0 -	the reaction. (4 marks) $(01-7.31) \qquad PV = NRT$
	1	$\begin{array}{ccc} (01-7.31) & PV = NRT \\ 93.69 kl_0 & N = P_RT = \frac{93.69 \times 0.638}{1.314 \times 1273.15 + 25} \end{array}$
		75.67 Ma 11- /RI - J. 311, (273.15+21)
		= 0.024/ mol
		is % yseld = 0.0241 x 100 = 91.7/o
		O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(O(

15. (a) The following table shows the boiling points of some straight-chain alkanes.

	CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂
Boiling point/°C	-162	-88	-42	-1	36

	Explain the trend in the boiling points of these straight-chain alkanes. (3 marks)
	With the addition of CHz homolog the C chain
	gets longer with increases the selface area of
	each progressive indecule. The larger the surface area
	each progress, i'e molecule. The larger the surface area or number of \$\varepsilon\$) the greater the strength of the
	dispession loves. The greates the strength of bond the
	Light the BP.
(h)	The following compound V is an isomer of one of the alkanes in the table

The following compound X is an isomer of one of the alkanes in the table. (b)

CH3C(CH3)2CH3

(i)	Give the IUPAC name of X.	(1 mark)
 	dinetlyl propane	
(ii)	X has a boiling point of 9.5 °C.	
	Explain why the boiling point of X is lower than that of its straight-cha	ain isomer.
 	The shape of X is more spherical than	(2 marks)
 £	the straight chain C517,2 A spleiscal	shape
 <i>L</i>	Las a Imalle sw face area than a s	Laight
 	Lain. A smaller surface area sexult in	
 lı	reaked dispersion forces , hence a lower Br	ρ

(iii) The following compound Y is produced when X reacts with chlorine.

In the space provided, draw the other position isomer/s of Y that can be formed.

Only 1 women possible since can easily twist asourd a single bond.

Describe and explain the trend in the boiling points of these position isomers of Y.

(3 marks)

I has both a adached to same a some interpolar than which will result in I being more polar than its isomet which has the charteness attached to different a some will be stronger in X ihan in isome a so BP for X will be high

- 16. The following diagram shows a chromatography technique.
 - (a) Chromatography separates components of a mixture.

Explain the basic principals involved. (3 marks)

1. One component is the stationary place
2. Another component is the mobile phase which
moves an carries de substance along The
stationary place.
3. Different analytes travel along at different lates
4. Due to polarity different analytis will adsorb
4. Due to polarity different analytis will adsorb at different distances, or times, on the stationary phase

		13		
an e	xample of the type Lan layed LC: 15 suit	of molecule which is so chromatoglapha	nique shown in the diagra uitable for this type of chr by paper chr ic mux toul such	omatography. (2 marks) (2 marks) (2 marks) (2 marks)
8.0 cm	Q 2.5 cm	final solvent level 9.1 cm origin	5.3 cm 2.0 cm 1.0 cm	6.0 cm ongin samples
W.	Z •	samples		
(iii) 	Calculate the R _f vi Rf = distance distance		mponent.	(3 marks)
w:	Rf= 8 911	= 0.88	Z 1 Rf = 2.5 9.1	= 0-27
(ii) Z		z, is more strongly ads	orbed? Bed since it n	(1 mark) 1 <i>0.Ve</i> S. Less.
/:::\	Evalain have dues	\// and 7 and be identi	e:-40	(O

(iii) Explain how dyes W and Z can be identified? (2 marks)

Ne Rf Value is the same in the same solvent a solvent a solvent a concentration. The Rf values obtained are compared to known Rf

Values for each substance, so W Z can be identified.

15 0		sent? Expla		gram	of a food s	ubstance	containin	g 1000 dye (3 mark
Same	ele A	Rf=	2	Ξ	0.33			
		,	6					
Samp	ek B	Rf =		=	0.17			
			6			У	ES, A	ampleC
Sam	ple C	R =	5.3		0.88		entain	Dye
,		1	6			4.00	io Re	is som
					would R _t be			•
Rf i R	р. О. Л f. to ио	also of sed in	de pap	dis	tances n L TLC	noved	by ile	Hont
Rf i R Rt i	10. 1 f. to	also of sed in selentre	de pap n tu	dis ne	tances n LC Lis a	noved measu	by ite	South
Rf i R Rt i	10. 1 f. to	also of sed in selentre	de pap n tu	dis ne	tances n LC Lis a	noved measu	by ite	the time
Rf i R Rt i	10. 1 f. to	also of sed in	de pap n tu	dis ne	tances n LC Lis a	noved measu	by ite	fort

17. Consider the following Figure 1. It shows the standard retention time for a set of various substances passed through a gas chromatography process.

The following Figure 2 shows the gas chromatograph of a tested sample.

(b) The following Figure 3 shows the Calibration curve of absorbance vs concentration for the substance found in (a).

Figure 3

The following Figure 4 shows the enlarged and measured peak of the substance found in (a).

Use Figures 3 and 4 to determine the concentration of the substance in the sample. Show your working clearly. (3 marks)

Area of	peak = t	Trangle = = = bxh	= 3.5 mm x 2	8-2mm
U	= 3.5 x 1	11angle = \frac{1}{2} \times \lambda \text{23.2 \times 10}^3	= 8012 x 10	5 2 M
		$2 \times 10^{-4} \text{ m}^2$		
. Krom		oncentiation =	8.2 m.	12st
			/	from graph)

18. Caffeine is a stimulant drug that is found in coffee, tea, energy drinks and some soft drinks. The concentration of caffeine can be determined using HPLC. Four caffeine solutions containing 50 ppm, 100 ppm, 150 ppm and 200 ppm were prepared. 25 microliters of each sample was injected into the HPLC column. The peak areas were measured and used to construct the calibration graph below. The chromatograms of the standard solution each produced a single peak at a retention time of 96 seconds.

25 micro-litre samples of various drinks thought to contain caffeine were then separately passed through the HPLC column. The results are shown below.

Sample	Retention time of major peak (seconds)	Peak area of largest peak
Soft drink A	96	12000
Soft drink B	32	8 500
Espresso coffee	96	211 000

(a)	Determine the caffeine content in ppm for drink A.	(1 mark)
	Exam graph: caffeire	cone = 127 nnm

The chromatographs of the various drinks thought to contain caffeine are shown below.

Chromatograms of 50 ppm standard caffeine solution, soft drink A, soft drink B and espresso coffee

(C)	Explain why the carreine content of the espresso corree sample cannot be relial	oıy
	determined using the information provided. (2 r	marks)
1	le coffeere peak area is beyond the dange of the	
С	alibiation graph. Extrapolation outside the lange of	<u>/</u>
t	& standard solve will not be acculate.	
(d)	Describe what can be done to the espresso coffee sample so that its caffeine can be reliably determined using the information provided. (2 r	ontent marks)
	Delute the expresso coffee sample (by factor)	(2)
	to bring its caffeine concentration within the	
1	to bring its caffeine concentration within the range of the calibration curve.	
	V	