Acid – Base Titration

<u>Prelab</u>: In grade 11 we used the titration equation: $M_A \times H \times V_A = M_B \times HOH \times V_B$. This equation allows us to determine what combination of acid and base results in neutralization. Essentially, it employs the idea that neutralization occurs when the number of moles of H^+ is equal to the number of moles of H^- .

I.e. M_A x #H gives the concentration of H^+ in mol/L. Then we multiply by V_A (in L) to get moles of H^+ .

E.g. What volume of 1 M Al(OH)₃ would be required to neutralize 50 mL of 2 M H₂SO₄?

 $M_A = 2 \text{ mol/L}, \#H = 2, V_A = 0.050 \text{ L}, M_B = 1 \text{ mol/L}, \#OH = 3, V_B = ?$

 $(2 \text{ mol/L})(2)(0.050 \text{ L}) = (1 \text{ mol/L})(3)(V_B)$, thus $V_B = 0.067 \text{ L}$ or 67 mL Question: What volume of 6 M H_2SO_4 would be required to neutralize 500 mL of 0.5 M NaOH?

Procedure:

- 1. Your instructor will demonstrate the procedure for using and rinsing pipettes and burettes.
- 2. Gather together a burette, a squeeze bottle containing distilled water, a 100 mL beaker, a 50 mL beaker. Rinse all equipment well with tap water. Dry the beakers with paper towel.
- 3. Place 0.2 M HCl in the 50 mL beaker. Rinse the burette with acid (don't forget to rinse the tip). Fill the burette to the 0 mL mark with HCl. (Ensure that there are no air bubbles in the tip of the burette).
- 4. Using the pipette at the front of the room, transfer 25 mL of 0.2 M NaOH into the 100 mL beaker.
- 5. Add 5 drops of phenolphthalein to the NaOH.
- 6. Rinse and calibrate a pH meter (calibrate it at pH 7 and pH 4).
- 7. Measure the pH of NaOH (record below). The tip of the pH meter should be submerged for the entire lab.
- 8. Carefully add the volume of HCl indicated in the chart (running totals are listed; at '15' add 5 mL more).
- 9. Mix the solution gently with the tip of the pH meter. Measure and record the pH.
- 10. Continue adding acid and measuring pH as indicated in the chart below.
- 11. Rinse equipment well with tap water. Extra solutions can be flushed down the drain. Wipe off your lab bench.

a	HCl added (mL)	0	10	15	20	23	24	25	26	27	30	35	40	50
b	Measured pH													
c	Total volume (L)	0.025	0.035											
d	HCl added (mol)	0	0.0020											
e	Net NaOH (mol)	0.0050	0.0030											
f	Net HCl (mol)													
g	[OH ⁻]	0.2												
h	рОН	0.70												
i	$[H^{+}]$													
j	Predicted pH	13.3												

Questions (reference 15.10):

- 1. Complete the chart (rows c i).
- 2. Graph 'Predicted pH' (y-axis) vs. mL 'HCl added' (x-axis).
- 3. Define titration, endpoint, and equivalence point.
- 4. Based on the shape of your graph, at what volume of HCl added would it be easiest to measure a different pH than what was expected? Explain.
- 5. Sketch graphs for these situations (for each, write one sentence describing how the graph has changed):
 - a) H₂SO₄ is used instead of HCl,
 - b) NaOH and HCl are switched (NaOH in burette, 25mL HCl in beaker)
 - c) NH₃ (a weak base) is used in place of NaOH (see pg. 642 643)
 - d) HF (a weak acid) is used in place of HCl.
- 6. Read "Selecting the Best Acid–Base Indicator" on page 643 644. Give one reason why bromothymol blue would be a better choice than phenolphthalein. Give one reason why it is a worse choice. Suggest 2 other acid-base indicators that would work for today's lab (see pg. 606).

Calculations needed for chart

- c. = original 0.025 L of NaOH + volume of HCl added (a)
- d.= volume HCl (a) x concentration HCl (0.2 M)
- e. = mol NaOH (0.005 mol) mol HCl (d)
- f. = mol HCl (d) mol NaOH (0.005 mol)
- $g = mol NaOH (e) \div volume (c)$
- $h = -\log [OH^{-}](g)$
- $i. = mol HCl (f) \div volume (c)$
- $|j. = 14 pOH(h) or -log[H^+](i)$