how many times different than the $[H^+]$ of a solution with pH=3?pH=3. Also recall that pH is a log scale; every change in pH of 1x represents a change in $[H^+]$ of 10x.11.2, 11.7, 11.9
$[H^+]$ of a solution with pH=3?represents a change in $[H^+]$ of 10x.11.2, 11.7, 11.9Give the Arrhenius definition of acids and bases.Distinguish between dissociation and ionization. Give an example of each.Acids release H^+ in solution. Bases release OH^- in solution.Give the Bronsted definition of acids and bases.Dissociation refers to the separation of ions (e.g. NaCl is an ionic solid. When dissolved in water its ions come apart). Ionization refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$).Give the Bronsted definition of acids and bases.Acids are H^+ donors. Bases are H^+ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H^+ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: $HCN + H_2O \leftrightarrow H_3O^+ + CN^-$ On the left, HCN donates H^+ to H_2O , thus HCN is a Bronsted acid and H_2O is a base. On the right, H_3O^+ donates H^+ to CN^- , thus H_3O^+ is a Bronsted acid (the conjugate of H_2O) and CN^- is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H^+) . A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kh problems we will consider only the first H^+ releaseed)
11.2, 11.7, 11.9Give the Arrhenius definition of acids and bases.Acids release H^+ in solution. Bases release OH^- in solution.Distinguish between dissociation and ionization. Give an example of each.Dissociation refers to the separation of ions (e.g. NaCl is an ionic solid. When dissolved in water its ions come apart). Ionization refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$).Give the Bronsted definition of acids and bases.Acids are H^+ donors. Bases are H^+ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H^+ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: $HCN + H_2O \leftrightarrow H_3O^+ + CN^-$ On the left, HCN donates H^+ to H_2O , thus HCN is a Bronsted acid and H_2O is a base. On the right, H_3O^+ donates H^+ to CN^- , thus H_3O^+ is a Bronsted acid (the conjugate of H_2O) and CN^- is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H^+) . A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kh problems we will consider only the first H^+ releaseed)
Give the Arrhenius definition of acids and bases.Acids release H+ in solution. Bases release OHT in solution.Distinguish between dissociation and ionization. Give an example of each.Dissociation refers to the separation of ions (e.g. NaCl is an ionic solid. When dissolved in water its ions come apart). Ionization refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: HCl + H ₂ O \rightarrow H ₃ O ⁺ + Cl ⁻).Give the Bronsted definition of acids and bases.Acids are H+ donors. Bases are H+ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H+ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H ₂ O \leftrightarrow H ₃ O ⁺ + CN ⁻ On the left, HCN donates H+ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O+ donates H+ to CN ⁻ , thus H ₃ O+ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Di- means two, -protic means proton (H+). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H+. H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
acids and bases.Distinguish between dissociation and ionization. Give an example of each.Dissociation refers to the separation of ions (e.g. NaCl is an ionic solid. When dissolved in water its ions come apart). Ionization refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: HCl + H ₂ O \rightarrow H ₃ O ⁺ + CГ).Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H ₂ O \leftrightarrow H ₃ O ⁺ + CN ⁻ On the left, HCN donates H ⁺ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O ⁺ donates H ⁺ to CN ⁻ , thus H ₃ O ⁺ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kh problems we will consider only the first H ⁺ released)
Distinguish between dissociation and ionization. Give an example of each.Dissociation refers to the separation of ions (e.g. NaCl is an ionic solid. When dissolved in water its ions come apart). Ionization refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: $HCl + H_2O \rightarrow H_3O^+ + C\Gamma$).Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H ₂ O \leftrightarrow H ₃ O ⁺ + CN ⁻ On the left, HCN donates H ⁺ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O ⁺ donates H ⁺ to CN ⁻ , thus H ₃ O ⁺ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
ionization. Give an example of each.solid. When dissolved in water its ions come apart). Ionization refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$).Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H ₂ O \leftrightarrow H ₃ O ⁺ + CN ⁻ On the left, HCN donates H ⁺ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O ⁺ donates H ⁺ to CN ⁻ , thus H ₃ O ⁺ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
each.refers to the creation of ions where none existed before (e.g. HCl is not an ionic compound, yet it reacts with water to form ions: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$).Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction:On the left, HCN donates H ⁺ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O ⁺ donates H ⁺ to CN ⁻ , thus H ₃ O ⁺ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kh problems we will consider only the first H ⁺ released)
is not an ionic compound, yet it reacts with water to form ions: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$.Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H_2O \leftrightarrow H_3O ⁺ + CN ⁻ The idea of conjugate acid (the conjugate of H_2O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H_2SO_4) is capable of giving off 2H ⁺ . H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
$HCl + H_2O \rightarrow H_3O^+ + Cl^-$ Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H ₂ O \leftrightarrow H ₃ O ⁺ + CN ⁻ On the left, HCN donates H ⁺ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O ⁺ donates H ⁺ to CN ⁻ , thus H ₃ O ⁺ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
Give the Bronsted definition of acids and bases.Acids are H ⁺ donors. Bases are H ⁺ acceptors.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H2O \leftrightarrow H3O ⁺ + CN ⁻ On the left, HCN donates H ⁺ to H2O, thus HCN is a Bronsted acid and H2O is a base. On the right, H3O ⁺ donates H ⁺ to CN ⁻ , thus H3O ⁺ is a Bronsted acid (the conjugate of H2O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H2SO4) is capable of giving off 2H ⁺ . H3PO4 is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
and bases.Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: HCN + H ₂ O \leftrightarrow H ₃ O ⁺ + CN ⁻ On the left, HCN donates H ⁺ to H ₂ O, thus HCN is a Bronsted acid and H ₂ O is a base. On the right, H ₃ O ⁺ donates H ⁺ to CN ⁻ , thus H ₃ O ⁺ is a Bronsted acid (the conjugate of H ₂ O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kh problems we will consider only the first H ⁺ released)
Bronsted definitions lead to what idea in acid-base equilibria?The idea of conjugate acid-base pairs (since if a H ⁺ is transferred in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction: $HCN + H_2O \leftrightarrow H_3O^+ + CN^-$ On the left, HCN donates H ⁺ to H_2O, thus HCN is a Bronsted acid and H_2O is a base. On the right, H_3O ⁺ donates H ⁺ to CN ⁻ , thus H_3O^+ is a Bronsted acid (the conjugate of H_2O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H_2SO_4) is capable of giving off 2H ⁺ . H_3PO_4 is triprotic. (In Ka or Kh problems we will consider only the first H ⁺ released)
idea in acid-base equilibria?in a reaction, it must be transferred back in the reverse reaction).Identify conjugate acid and base pairs in the reaction:On the left, HCN donates H^+ to H_2O , thus HCN is a Bronsted acid and H_2O is a base. On the right, H_3O^+ donates H^+ to CN^- , thus H_3O^+ is a Bronsted acid (the conjugate of H_2O) and CN^- is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H^+). A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H^+ released)
Identify conjugate acid and base pairs in the reaction: $HCN + H_2O \leftrightarrow H_3O^+ + CN^-$ On the left, HCN donates H ⁺ to H_2O, thus HCN is a Bronsted acid and H_2O is a base. On the right, H_3O ⁺ donates H ⁺ to CN ⁻ , thus H_3O^+ is a Bronsted acid (the conjugate of H_2O) and CN ⁻ is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H_2SO_4) is capable of giving off 2H ⁺ . H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
pairs in the reaction: $HCN + H_2O \leftrightarrow H_3O^+ + CN^-$ and H_2O is a base. On the right, H_3O^+ donates H^+ to CN^- , thus H_3O^+ is a Bronsted acid (the conjugate of H_2O) and CN^- is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H^+). A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H^+ released)
$HCN + H_2O \leftrightarrow H_3O^+ + CN^ H_3O^+$ is a Bronsted acid (the conjugate of H_2O) and CN^- is a bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.3Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H^+ released)
bronsted base (the conjugate of HCN).Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.315.3What does diprotic and triprotic mean?Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
Give the Lewis definition of acids and bases.Acids are electron pair acceptors. Bases are electron pair donors.15.315.3What does diprotic and triprotic mean?Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
and bases.15.3What does diprotic and triprotic mean?Di- means two, -protic means proton (H ⁺). A diprotic acid (such as H ₂ SO ₄) is capable of giving off 2H ⁺ . H ₃ PO ₄ is triprotic. (In Ka or Kb problems we will consider only the first H ⁺ released)
15.3What does diprotic and triprotic mean?Di- means two, -protic means proton (H^+). A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H^+ released)
What does diprotic and triprotic mean? D1- means two, -protic means proton (H ⁺). A diprotic acid (such as H_2SO_4) is capable of giving off $2H^+$. H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H^+ released)
mean? as H_2SO_4) is capable of giving off 2H ⁺ . H_3PO_4 is triprotic. (In Ka or Kb problems we will consider only the first H^+ released)
Or K n nroniems we will consider only the first H released
Write the chamical equation for α IIA(β) \sim II ⁺ (β) \sim A ⁻ (β) 1 A
while the chemical equation for a $HA(aq) \leftrightarrow H(aq) + A(aq)$, where A represents the anion part of $HA(aq) \leftrightarrow H(aq) + A(aq)$, where A represents the anion part of $HA(aq) \leftrightarrow H(aq) + A(aq)$.
weak actu in its most general form. the actu. (This is simplified from $HA + H_2 \cup \leftrightarrow H_3 \cup + A$).
what is meant by Ka? Give the Ka is the acid ionization constant. $Ka = H A $
equilibrium law for Ka. [HA]
How are Ka problems solved? Same as other equilibrium problems (using a RICE chart).
then other equilibrium problems?
How is acid strongth defined $K_0 < 10^{-3}$ Weak acid $10^{-3} < K_0 < 1$ Moderate acid
How is actu strength defined $Ka < 10$ weak actu, $10 < Ka < 1$ Moderate actu,
$\frac{1}{1} \frac{1}{1} \frac{1}$
Concentration (use 0.0001 M HCl as because all HCl molecules dissociate (into H^+ Cl^-). Concentration
an example) refers to moles/volume (described as dilute or concentrated)
Thus 0 0001 M HCl is a dilute solution of a strong acid
15.4, pg 621
Write the chemical equation for a $B + H_2 O \leftrightarrow BH^+ + OH^-$ where B represents the base (Note: B
weak base in its most general form. $\int df = \frac{1}{2} + \frac$
What is meant by Kb? Give the Kb is the base ionization constant. $Kb = [BH^+][OH^-]$
equilibrium law for Kb.
How are Kb problems solved? Same as other equilibrium problems (using a RICE chart).
How are Kb problems often different They involve OH ⁻ . thus they often require conversions between
than other equilibrium problems? H^+ , pH, OH ⁻ and pOH.
Which bases are the easiest to All Group IA and IIA hydroxides (e.g. NaOH and Ca(OH) ₂). It is
identify as being strong bases? difficult to predict the strength of other metal hydroxides.