Ca(OH) ₂ has a low solubility in	Strength is defined by % ionization. Even though only a small
water. How can it be a strong base?	amount of Ca(OH) ₂ dissolves, all that dissolves also dissociates.
What does the strength of an acid or	Conjugates have opposite strength. I.e. the conjugate of a strong
base indicate about its conjugate?	acid is a weak base, the conjugate of a strong base is a weak acid.
15.6	
What is a buffer?	A buffer is a pair of substances in solution that resist changes in
	pH when either acid or base is added. This pair of substances is
	often a weak acid and a salt of the acid.
Give an example of a buffer.	Acetic acid ($HC_2H_3O_2$) plus sodium acetate ($NaC_2H_3O_2$).
Write the general equation important	$HA(aq) \leftrightarrow H^+(aq) + A^-(aq)$
in buffer systems.	
Explain how a buffer resists changes	With the addition of H ⁺ , HA(aq) \leftrightarrow H ⁺ (aq) + A ⁻ (aq) shifts left,
in pH.	removing some of the added H ⁺ . Conversely, added OH ⁻ removes
	H ⁺ by forming water. This shifts the equilibrium to the right and
	more H^{+} is produced, compensating for the initial loss of H^{+} .
15.8	[
Define cation and anion.	A cation is a positive ion. An anion is a negative ion.
With the use of a chemical equation	$A^- + H_2O \leftrightarrow HA + OH^-$
show how amons can affect pH.	(i.e. formation of a base from water)
With the use of a chemical equation	$XH^+ + H_2O \leftrightarrow X + H_3O^+$
show how cations can affect pH.	(i.e. formation of an acid from water)
What name is given to the formation	It is called hydrolysis of ions because the ions are reacting with
of acid or base from ions? Why?	water. (Hydrolysis means a reaction with water).
Which anions result in the formation	Anions with weak conjugate acids form bases. Anions with strong
of base? Which do not.	conjugate acids do not form bases.
Would $NaC_2H_3O_2$ form a base?	The conjugate acid of $C_2H_3O_2^-$ is the weak acid $HC_2H_3O_2$, thus a
What about NaCl?	solution of $NaC_2H_3O_2$ would be basic. The conjugate acid of Cl ⁻ is
	the strong acid HCl, thus a solution of NaCl would be neutral.
Explain why $C_2H_3O_2$ forms a base.	$C_2H_3O_2^-$ reacts with water: $C_2H_3O_2^- + H_2O \leftrightarrow HC_2H_3O_2 + OH^-$
What is a second way to view the	$HC_2H_3O_2$ is a weak acid, thus $C_2H_3O_2^-$ in water participates in the
formation of a base by $C_2H_3O_2^-$?	equilibrium: $C_2H_3O_2^- + H^+ \leftrightarrow HC_2H_3O_2$. According to Le
	Chatelier's principle the presence of $C_2H_3O_2^-$ from NaC ₂ H ₃ O ₂ will
	cause a decrease in H^+ .
Explain why Cl ⁻ does not form a	The reaction $Cl^- + H^+ \leftarrow HCl$ is not an equilibrium. HCl is a
base.	strong acid, meaning that it is 100% ionized. Thus, the presence
	of Cl ⁻ will not remove H ⁻ .
How can the effect of a salt on pH	Think of the acid of the salt and the base of the salt. If Ka <kb a<="" td=""></kb>
easily be determined?	base is formed, if Ka>Kb an acid is formed.
Would a solution of NH_4Cl be	The acid of this salt is HCl (high Ka). The base of this salt is NH_3
acidic, neutral, or basic?	(low Kb). Since Ka>Kb, the solution would be acidic.
What is the difference between Ka,	Kc and Keq are the same thing. All of the other K's are specific
Kb, Kc, Keq, Ksp, Kw?	types (or subsets) of Kc. The purpose of naming them differently
	is that it tells us what kind of problem we are dealing with. Ksp,
	Ka, Kb, Kw all have to do with the formation of ions. In Ksp and
	Kw the reactants are solid or liquid and thus are not found in the
	equilibrium law. In Ka and Kb the reactants are aqueous and are
	thus included in the equilibrium law.

Review examples 15.1-15.6, 15.9-15.11, 15.20, 15.21