Chapter 23: ElectrochemistryUoltaic Cells, Cell Potentials (p. 677-681)Page 4(Handout, p. 685-691, Notice: we calculate E°cell slightly differently than the book!)Page 4

- 1. Consider this voltaic cell made with Mg and Ni:
- a. part "a" is called the _____
- b. What solution is in container "b"? Mg(NO₃)₂ or Ni(NO₃)₂
- c. What solution is in container "c"? Mg(NO₃)₂ or Ni(NO₃)₂
- d. Does the *oxidation* or *reduction* occur at the Mg electrode? Is Mg the *red* wire or *black* wire?
 Write the equation for this half reaction ______
- e. Does the *oxidation* or *reduction* occur at the Ni electrode? Is Ni the *red* wire or *black* wire? Write the equation for this half reaction _____

f. Write the overall reaction for the cell ______

- g. Which way do electrons flow in the wire?
- h. Calculate E°_{cell} for this cell.
- 2. a. For the Fe | Fe⁺² and Cu | Cu⁺² half cells : Which is oxidized? _____ Which is reduced? _____ Write the half reactions for the oxidation and the reduction and calculate E°_{cell} .
- b. For the Al | Al⁺³ and Ag | Ag⁺ half cells : Which is oxidized? _____ Which is reduced? _____ Write the half reactions for the oxidation and the reduction and calculate E°_{cell} .
- 3. A voltaic cell is made with Paladium ($Pd | Pd^{+2}$) = red wire and $I_2 | I^-$ = black wire. The measured E°_{cell} is + 0.41 Volts. $I_2 | I^-$ is found on your E°_{red} chart. $Pd | Pd^{+2}$ is not.
 - a. Is $Pd | Pd^{+2}$ the oxidation or the reduction? Is $I_2 | I^-$ the oxidation or the reduction?
 - b. Calculate E°_{red} for the Pd⁺² + 2 e⁻ ---> Pd reaction using this data.
 - c. Determine E°ox for Pd \longrightarrow Pd⁺² + 2 e⁻

(Ans. 1d. ox, black, e. red, red, f. Mg+Ni⁺²—> Mg⁺² + Ni. g, Mg to Ni, h. +2.12 V; 2a. Fe, Cu, +0.78 V, b. Al, Ag, +2.46 V, 3a. red, ox, b. +0.95 V, c. -0.95V; 4a. +0.34 V, b. -0.34 V)

Electrochemistry Worksheet: using Reduction potentials Page 5

- 1. In a voltaic cell with red wire Pb | Pb⁺² and black wire In | In⁺², the measured $E^{\circ}_{cell} = + 0.21 \text{ V}$. a. Calculate E°_{ox} for this half reaction: In \longrightarrow In⁺² + 2 e⁻
 - b. Determine E°_{red} for $In^{+2} + 2e^{-} \longrightarrow In$
- 2. In a voltaic cell with red wire $Sn^{+2} | Sn^{+4}$ and black wire $Zn | Zn^{+2}$, the measured $E^{\circ}_{cell} = + 0.91$ V. a. Is $Zn | Zn^{+2}$ the oxidation or reduction? Write the half reaction, and determine E°_{ox} or E°_{red} (as appropriate) from your E° red chart.

b. Is $Sn^{+2} | Sn^{+4}$ the Oxidation or Reduction? Write the half reaction. Calculate E°_{ox} or E°_{red} (as appropriate).

- c. Where would $Sn^{+2} | Sn^{+4}$ go on your E°_{red} chart?
- 3. In a voltaic cell with red wire $Zn | Zn^{+2}$ and black wire $Sc | Sc^{+3}$, the measured $E^{\circ}_{cell} = +1.32 \text{ V}$. a. Calculate E°_{ox} or E°_{red} (as appropriate) for $Sc | Sc^{+3}$.
 - b. Where would $Sc | Sc^{+3}$ go on your E°_{red} chart?
- 4. Which would produce a higher voltage?
 - a. a voltaic cell made using Magnesium and copper, or one using magnesium and silver? _____
 - b. a voltaic cell made using Al and Zn, or one made from Al and Pb? _____
- 5. Would the following combinations react or not react? (Hint: which is more easily oxidized?)
 - a. Mg in FeCl₃ solution c. Zn in $Mg(NO_3)_2$ solution
 - b. Fe in Cu^{+2} solution d. Ag in Cu^{+2} solution
- 6. Rank these metals in order of the most easily oxidized (1) to the least easily oxidized (4).
 - Cu Mg Ag Al
- 7. Rank the following in order of the most easily reduced (1) to the least easily reduced (4).

 Cu^{+2} Na^+ $MnO_4^ Co^{+2}$

⁽¹a. +0.34 V, b. -0.34 V; 2a ox, E°ox=+0.76 V, b. red, E°red=+0.15V, c. below H₂; 3a. E°ox = +2.08 so E°red =-2.08 V, b. below Mg; 4a.Mg&Ag, b. Al&Pb; 5. yes a & b; 6. Mg, Al, Cu, Ag; 7. MnO₄⁻, Cu⁺², Co⁺², Na⁺)

8.	Would each of the following most likely be <i>oxidized</i> or <i>reduced</i> ?							Page 6
	$Cr_2O_7^{-2}$	Ag	Na ⁺	Mg	Cl-	Fe	Ag^+	
9. Which of these are oxidizing agents and which are reducing agents?								
	MnO4-	Mg	Κ	Cl_2	Fe	Ag+	$Cr_2O_7^{-2}$	I-
	Which is the	BEST oxic	lizing agent	?	The B	est reducing	agent?	
 10. Identify the element <i>oxidized</i> and <i>reduced</i> in these redox reactions. Then calculate the standar potential (E°_{cell}) for each. Would each react spontaneously as written (+ E°) <i>or</i> in the reverse(a. 2 NaCl + Co —> CoCl₂ + 2 Na 								the standard cell ne reverse(– E°)?
	b. $Cu(NO_3)_2 + Ni \longrightarrow Ni(NO_3)_2 + Cu$							
	c. $I_2 + 2 Fe^{+2} \longrightarrow 2 I^- + 2 Fe^{+3}$ (For: $Fe^{+3} + e^- \longrightarrow Fe^{+2}$:							= +0.77 V)
	d. $2 Cr^{+2} + 0$	Cu ⁺² >	→ 2 Cr ⁺³ + Cu	1	(For:	$c Cr^{+3} + e^{-}$	-> Cr ⁺² : E° _{red}	=-0.41)
EI	ectrolytic C	ells (p. 692	2-697)					
11. One way to produce Chlorine gas is by the electrolysis of melted sodium chloride.								
	2 NaCl — el	ectricity	-> 2 Na + 0	Cl_2	Ţ	<i>N</i> rite in all th	e oxidation n	umbers.
a. What is oxidized? Write the half reaction for the oxidation								
b. What is reduced? Write the half reaction for the reduction								
12. For the electrolysis of melted $CuBr_2$: $CuBr_2$ —electricity—> $Cu + Br_2$								
a. Write the half reaction for the oxidation								
b.	Write the half	reaction f	or the reduc	tion				
13	. Identify the f	following	as examples	or charac	cteristics of	a <i>Voltaic</i> cell	or an Electroly	<i>tic</i> Cell.
a.	a. Produces electricity f. Requires electricity							
b.	Produces elec	ctrical ener	rgy	g.	Absorbs e	lectrical ener	ду	
c.	. Non-spontaneous h. Spontaneous							
d.	Flashlight bat	tery		i.	Ni-Cad ba	ttery when re	echarging	
e.	 car battery j. Turning melted salt into Na and Cl₂ 							

 $(8. \text{ ox} = \text{Ag}, \text{Mg}, \text{Cl}^-, \text{Fe}, \text{red} = \text{Cr}_2\text{O}_7^{-2}, \text{Na}^+, \text{Ag}^+; 9. \text{ ox } \text{ag} = \text{MnO}_4^-, \text{Cl}_2, \text{Ag}^+, \text{Cr}_2\text{O}_7^{-2}, \text{best} = \text{MnO}_4^-, \text{ red } \text{ag} = \text{Mg}, \text{K}, \text{Fe}, \text{I}^-, \text{best} = \text{K}; 10. \text{ a.} -2.43 \text{ V}; \text{b}. +0.59 \text{ V}, \text{c}. -0.23 \text{ V}; \text{d}. +0.75 \text{ V}; 11. \text{a}. \text{Cl}^-, \text{b}. \text{Na}^+; 12. \text{Br}^-, \text{Cu}^{+2}; 13 \text{ V}=\text{a},\text{b},\text{d},\text{h}, \text{E}=\text{c},\text{f},\text{g}, \text{i}, \text{j}, \text{Both} =\text{e}$

Review of Electrochemistry and Redox

Page 7

1. a. Balance this redox reaction using the oxidation number change method.

 $Cr_2O_7^{-2} + Ge + H^+ \longrightarrow Cr^{+3} + Ge^{+2} + H_2O$

- b. The measured E°_{cell} for the above redox reaction is +1.09 V. Calculate E°_{red} for this half reaction. $Ge^{+2} + 2 e^{-} \longrightarrow Ge$
- c. Where would Ge go on your E°_{red} chart?_____
- 2. Balance this redox reaction.

 $Sn(SO_4)_2 \hspace{0.1 cm} + \hspace{0.1 cm} HCl \hspace{0.1 cm} \longrightarrow \hspace{0.1 cm} Cl_2 \hspace{0.1 cm} + \hspace{0.1 cm} Sn \hspace{0.1 cm} + \hspace{0.1 cm} H_2SO_4$

3. a. Balance this redox reaction using the oxidation number change method. **Page 8**

 $Al + ClO_2^- + H^+ \longrightarrow Cl^- + Al^{+3} + H_2O$

b. E°red for this half reaction is +1.56 V: $ClO_2^- + 4 H^+ + 4 e^- \longrightarrow Cl^- + 2 H_2O$ Calculate E°cell for the reaction in part a.

- c. Would the reaction from part a react spontaneously in the forward direction or in reverse? Why?
- 4. Balance this redox reaction. (Tricky)

 $MnO_4^- + Cl^- + H^+ \longrightarrow Cl_2 + MnO_2 + H_2O$

 $(1. a. 1, 3, 14, 2, 3, 7, b. E^{\circ}ox = -0.24 V \text{ so } E^{\circ}red = +0.24 V, below H_2; 2. 1, 4, 2, 1, 2) 3. 4, 3, 12, 3, 4, 6, b. E^{\circ}cell = +3.22 V, c. forward; 4. 2, 6, 8, 3, 2, 4)$