Student name:

1 Sketch the graphs of each of the following:

a
$$v = -x^2 + 8$$

b
$$y = (x-3)^2 - 5$$

$$y = 5 - (x+3)^2$$

d
$$y = x^2 - x - 8$$

2 Use the quadratic formula to solve each of the following:

$$x^2 - 6x - 2 = 0$$

b
$$2x^2 - 3x - 7 = 0$$

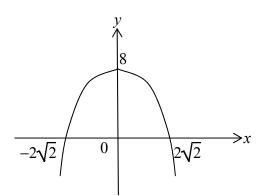
- 3 A rectangle has a perimeter of 80 m and the square of the length of the diagonal is 1000. Find its dimensions.
- 4 A parabola that has its vertex at the point with coordinates (-1, 6) passes through the point (2, 10). Find the equation of the parabola.

5 Solve the simultaneous equations for x and y:

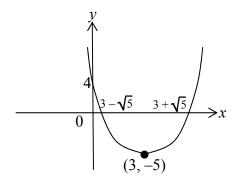
$$y = x^2 + 7x - 11$$

$$y = x - 1$$

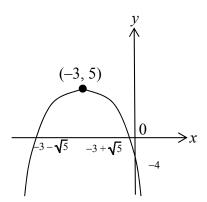
- 6 A lawn a metres long and b metres wide has a path of uniform width x metres around it.
 - **a** Find the area of the path in terms of a, b and x.
 - **b** i If a = 28 and b = 50 find the area of the path in terms of x.
 - ii If the area of the path is 160 m^2 find the value of x.
- 7 Consider the quadratic equation $2px^2 + 6x + 2 = 0$.
 - **a** Find the discriminant.
 - **b** Find the values of p for which there are two solutions.
 - **c** Find the values of *p* for which there are no solutions.
 - **d** Find the value of *p* for which there is one solution.
- 8 Using the discriminant, show that the graph of $y = 2x^2 + 6px 2$ touches or crosses the x-axis for all values of p.
- 9 Consider the quadratic equation $(-2p+1)x^2 + (p-2)x + 6p = 0$.
 - **a** Find the discriminant.
 - **b** Show that the discriminant is a perfect square.
 - c For $p \neq \frac{1}{2}$, show that there are always two rational solutions and find these solutions.

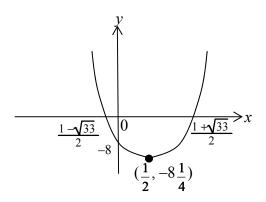

Chapter 3 Quadratics: Assignment

- 10 Consider the quadratic equation $ax^2 + 10x + (a 5) = 0$.
 - a Find the discriminant.
 - **b** Find the values of *a* for which there are two solutions.
 - **c** Find the values of *a* for which there are no solutions.
 - **d** Find the value of *a* for which there is one solution.
- 11 Consider the quadratic rule $a^2x^2 2ax a + 1$.
 - **a** Find the discriminant.
 - **b** Find the values of a for which the graph $y = a^2x^2 2ax a + 1$:
 - i crosses the x-axis
 - ii does not cross the x-axis.
 - c Show that $a^2x^2 2ax a + 1 = (ax + \sqrt{a} 1)(ax \sqrt{a} 1)$.


Chapter 3 Quadratics: Assignment

Answers


1 a


b

c

d

Chapter 3 Quadratics: Assignment

2 **a**
$$3-\sqrt{11}$$
 or $3+\sqrt{11}$

b
$$\frac{3+\sqrt{65}}{4}$$
 or $\frac{3-\sqrt{65}}{4}$

4
$$y = \frac{4}{9}(x+1)^2 + 6$$

5
$$(-3-\sqrt{19},-4-\sqrt{19}), (-3+\sqrt{19},-4+\sqrt{19})$$

6 a
$$A = 4x^2 + 2xb + 2xa$$

b i
$$A = 4x^2 + 156x$$
 ii $x = 1$

7 **a**
$$36-16p$$
 b $p < \frac{9}{4}$

c
$$p > \frac{9}{4}$$
 d $p = \frac{9}{4}$

8
$$36p^2 + 16 > 0$$
 for all p

9 **a**
$$49p^2 - 28p + 4$$

b
$$(7p-2)^2$$

c 2 and
$$\frac{3p}{1-2p}$$

10 a
$$-4a^2 + 20a + 100$$

b
$$\frac{5-5\sqrt{5}}{2} < a < \frac{5+5\sqrt{5}}{2}$$

$$c$$
 $a > \frac{5 + 5\sqrt{5}}{2}$ or $a < \frac{5 - 5\sqrt{5}}{2}$

d
$$\frac{5+5\sqrt{5}}{2}$$
 or $\frac{5-5\sqrt{5}}{2}$

11 a
$$4a^3$$

b i
$$a > 0$$

i
$$a > 0$$
 ii $a < 0$