

## **Higher Derivatives**

**Accelerated Mathematics (Curtin University)** 



## **WORKSHEET**

## Higher derivatives

1 Find the first and second derivatives of the following.

a  $x^2$ 

**b**  $x^{5}$ 

**c**  $3x^4 - 2x^3 - x^2 + 7x - 1$ 

 $d \sin(x)$ 

e  $5\sin(2x)$ 

f  $3x^{-5}$ 

g  $3x - \pi$ 

h  $x^5 - 4x^3 + 3x$ 

 $i e^x$ 

**j** $3e^{2x}$ 

 $\mathbf{k} \ 4 \cos(3x)$ 

 $2x(x^2-7x+1)$ 

 $\mathbf{m} \ s(t) = ut + \frac{1}{2}at^2$ 

n  $\frac{x^2-1}{x+6}$ 



**2** Given  $g(x) = 4x^4 + x^3 - 2x^2 + 6x - 1$ , complete the table.

| x                     | -2 | -1 | 0 | 1 | 2 |
|-----------------------|----|----|---|---|---|
| g(x)                  |    |    |   |   |   |
| g'(x)                 |    |    |   |   |   |
| $g^{\prime\prime}(x)$ |    |    |   |   |   |

- **3** Find the fourth derivative of the following.
  - a  $5x^4$
  - **b**  $3e^{2x}$
  - c  $3\sin(x)$
  - **d**  $x^7 2x^5 + x^4 x^2 + 9$
  - **e**  $-x^{-1}$
  - $f \frac{1}{6}(2x-1)^6$



**4** Find the value(s) of *x* for which f''(x) = 0, given that:

**a** 
$$f(x) = x^3 - 6x^2 - x + 10$$

**b** 
$$f(x) = 2x^3 + 5x^2 - 3x + 1$$

**c** 
$$f(x) = \frac{x^4}{12} - \frac{x^3}{3} - \frac{15x^2}{2} + 11x - 7$$

**d** 
$$f(x) = \frac{x^3}{3} + x^2 - \frac{x}{3} + \frac{1}{3}$$

**e** 
$$f(x) = 5x^7$$

$$f \quad f(x) = \frac{x^4}{12} - \frac{9x^2}{2} + \frac{2x}{3} - 8$$

- **5** The position (in metres) of an object after t seconds is given by  $x(t) = t^3 4t^2 + 4t$ . Find:
  - a the initial velocity of the object
  - **b** the velocity of the object after 1 second
  - **c** the velocity of the object after 3 seconds
  - **d** the initial acceleration of the object

- e the acceleration of the object after 3 seconds
- f the position, velocity and acceleration of the object after 2 seconds
- **g** the position, velocity and acceleration of the object after 4 seconds.

## **Answers**

**1 a** 2*x* 

**b**  $5x^4$ 

**c**  $12x^3 - 6x^2 - 2x + 7$ 

 $d \cos(x)$ 

**e**  $10\cos(2x)$ 

f  $-15x^{-6}$ 

**g** 3

**h**  $5x^4 - 12x^2 + 3$ 

 $i e^x$ 

 $i 6e^{2x}$ 

**k**  $-12 \sin(3x)$ 

 $16x^2 - 28x + 2$ 

 $\mathbf{m} \ s'(t) = u + at$ 

n  $\frac{x^2 + 12x + 1}{(x+6)^2}$ 

2

 $20x^{3}$ 

 $36x^2 - 12x - 2$ 

 $-\sin(x)$ 

 $-20 \sin(2x)$ 

 $90x^{-7}$ 

0

 $20x^3 - 24x$ 

 $12e^{2x}$ 

 $-36\cos(3x)$ 

12x - 28

s''(t) = a

| x                     | -2   | -1 | 0  | 1  | 2   |
|-----------------------|------|----|----|----|-----|
| g(x)                  | 35   | -6 | -1 | 8  | 75  |
| g'(x)                 | -102 | -3 | 6  | 21 | 138 |
| $g^{\prime\prime}(x)$ | 176  | 38 | -4 | 50 | 200 |

**3 a** 120

2

**b**  $48e^{2x}$ 

**c**  $3 \sin(x)$ 

**d**  $840x^3 - 240x + 24$ 

**e**  $-24x^{-5}$ 

 $\mathbf{f} \ 3840x^2 - 3840x + 960$ 

**4 a** 2

**b**  $-\frac{5}{6}$ 

**c** 5, -3

 $\mathbf{d} - 1$ 

**e** 0

f 3, -3



- **5 a** 4 m/s
  - **b** -1 m/s
  - **c** 7 m/s
  - **d**  $-8 \text{ m/s}^2$
  - **e**  $10 \text{ m/s}^2$
  - **f** 0 m 0 m/s $4 \text{ m/s}^2$
  - $16 \text{ m/s}^2$ **g** 16 m 20 m/s