

COMPLEX NUMBER EXAMPLES $\frac{1}{\sqrt{1}}$ Express $\frac{4+3i}{2i}$ in cartesian form. $\frac{2-i}{4+3i}$ 4 + 3i **roots of** − **on an argand plane.** $\frac{2+i}{2+i} = \frac{(4+3i)(2+i)}{(2-i)(2+i)}$ $\frac{4+3i}{2-i} = \frac{4+3i}{2-i}$ $\frac{4+3i}{2-i} \times \frac{2+i}{2+i}$ $(2 - i)(2 + i)$ $\frac{8+4i+6i+3i^2}{4-i^2} = \frac{5+10i}{5} = 1+2i$ $4 - i^2$ 5 $z_1 = 16^{\frac{1}{4}} cis(\frac{\pi}{4}) = 2 cis(\frac{\pi}{4})$ **<u>Z</u>** Express $(-\sqrt{3} + i)(4 + 4i)$ in polar form. Converting $(-\sqrt{3} + i)$ to polar form: $r = |z| = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$ $\theta = \arg(z) = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = -\frac{\pi}{6}$ but as z is in the $z_4 = 16^{\frac{1}{4}} cis \left(\frac{\pi + (3 \times 2\pi)}{4} \right)$ second quadrant, $arg(z) = -\frac{\pi}{6} + \pi = \frac{5\pi}{6}$ Converting $(4 + 4i)$ to polar form: 2 $\sum_{\mathbf{Q}} Z_1$ $r = |z| = \sqrt{4^2 + 4^2} = \sqrt{32} = \sqrt{16}\sqrt{2} = 4\sqrt{2}$ $\theta = \arg(z) = \tan^{-1}\left(\frac{4}{4}\right) = \frac{\pi}{4}$ Multiplying two complex numbers together: −2 $\left[2 cis \left(\frac{5\pi}{6}\right)\right] \times \left[4 \sqrt{2} cis \left(\frac{\pi}{4}\right)\right] = 8 \sqrt{2} cis \left(\frac{5\pi}{6} + \frac{\pi}{4}\right)$ z^{\bullet} −2 $= 8\sqrt{2}cis\left(\frac{26\pi}{24}\right) = 8\sqrt{2}cis\left(\frac{13\pi}{12}\right)$ **B** Determine all roots, real and complex, of **the equation** $f(z) = z^3 - 4z^2 + z + 26$
Substitute different values of z until $f(z) = 0$: $f(0) = 26 \neq 0, f(1) = 24 \neq 0, f(-1) = 20 \neq 0,$ $f(2) = 20 \neq 0 \rightarrow$ these are not factors $f(-2) = 0$ hence $(z + 2)$ is a factor $\arg(4\sqrt{3} - 4i) = \tan^{-1}\left(\frac{4}{-4\sqrt{3}}\right) = -\frac{\pi}{6}$ $\therefore z^3 - 4z^2 + z + 26 = (z + 2)(z^2 + bz + c)$ Using polynomial long division (on page 2): $propFrac\left(\frac{z^3-4z^2+z+26}{z^3-z^2}\right)=z^2-6z+13$ $z_1 = 8 \text{cis} \left(-\frac{\pi}{6} \right) = 4\sqrt{3} - 4i$ $z + 2$ 6 Find roots of $z^2 - 6z + 13$ by quadratic formula: $z_2 = 8 \text{cis} \left(-\frac{\pi}{6}\right)$ $\frac{\pi}{6} + \frac{2\pi}{3}$ $z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2} = \frac{6 \pm \sqrt{36 - 4(1)(13)}}{2(4)}$ $\overline{2a}$ 2(1) $z_3 = 8 \text{cis} \left(-\frac{\pi}{6}\right)$ $\frac{\pi}{6} + \frac{4\pi}{3}$ $\frac{6 \pm \sqrt{-16}}{2} = \frac{6 \pm \sqrt{16} \sqrt{-1}}{2} = \frac{6 \pm 4i}{2} = 3 \pm 2i$ $=\frac{2+2+2+2+2+2}{2}=\frac{2+2+2+2+2}{2}=\frac{2+2+2}{2}=\frac{2}{2}=\frac$ **Find all the complex numbers that satisfy** by 90[°] anti-clockwise. the equation $|z|^2 - iz = 36 + 4i$ Let $z = x + yi$ and hence:
 $|(x + yi)|^2 - i(x + yi) = 36 + 4i$ by $\left(\frac{n\pi}{2}\right)$ anti-clockwise. $(\sqrt{x^2 + y^2})^2 - xi - yi^2 = 36 + 4i$ $x^2 + y^2 - xi + y - 36 - 4i = 0$ $x^2 + y^2 - xi + y - 36 - 4i = 0$

Equating real and imaginary parts:
 $x^2 + y^2 + y - 36 = 0$ and $-x - 4 = 0$

Hence, $x = -4$ and $(-4)^2 + y^2 + y - 36 = 0$ number in the y-axis. $16 + y^2 + y - 36 = 0$ number in the x-axis. $y^2 + y - 20 = 0$ and $(y + 5)(y - 4) = 0$ Giving $y = -5, 4$ hence $z = -4 - 5i, -4 + 4i$ **<u>S**</u> Let *a* and *b* be real numbers with $a \neq b$. If $z = x + yi$ such that $|z - a|^2 - |z - b|^2 = 1$, **prove that** $x = \frac{a+b}{2} + \frac{1}{2(b-a)}$
 $|(x + yi) - a|^2 - |(x + yi) - b|^2 = 1$
 $|(x - a) + yi|^2 - |(x - b) + yi|^2 = 1$ $(x-a)^2 + y^2 - [(x-b)^2 + y^2] = 1$
 $(x-a)^2 - (x-b)^2 = 1$ -2 −2 $x^2 - 2ax + a^2 - x^2 + 2bx - b^2 = 1$
 $(2b - 2a)x + a^2 - b^2 = 1$ $x = \frac{1-a^2+b^2}{2b-2a} = \frac{a+b}{2} + \frac{1}{2(b-a)}$ **DE MOIVRE'S THEOREM EXAMPLES** 1 **<u>1**</u> Find z^{10} given that $z = 1 - i$ -2 \sqrt{x} 3 $r = |z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$ and $\arg(z) = -\frac{\pi}{4}$ −2 Hence, *z* in polar form is $z = \sqrt{2}cis\left(-\frac{\pi}{4}\right)$ Applying De Moivre's Theorem gives: $z^{10} = (\sqrt{2})^{10}$ cis $(10 \times -\frac{\pi}{4})$ $\left(\frac{\pi}{4}\right) = 2^5 cis \left(-\frac{10\pi}{4}\right)$ 4) √3 \bullet $\left(\frac{5\pi}{2}\right)$ = 32cis $\left(-\frac{5\pi}{2}\right)$ $\frac{\pi}{2}$ + 2 π) $\left(\frac{\pi}{2}\right)$ = 32 $\left[\cos\left(-\frac{\pi}{2}\right)\right]$ $\frac{\pi}{2}$) + i sin $\left(-\frac{\pi}{2}\right)$ −1 $\frac{\pi}{2}]$ −√3 $= 32[0 + i(-1)] = -32i$ **<u>Z**</u> Use De Moivre's Theorem to find the $\frac{2}{\pi}$ **see 25** monted instruction to $\frac{1}{\pi}$ $(cos\theta + i sin\theta)^{15} = -i$ $cos(15\theta) + i sin(15\theta) = 0 - i$ Equating real and imaginary parts:
 $0 = \cos(15\theta)$ and $-1 = \sin(15\theta)$ π Considering both conditions, $15\theta = \frac{3\pi}{2}$ $\overline{3}$ Hence, $\theta = \frac{3\pi}{30} = \frac{\pi}{10}$ is the smallest positive angle **By expanding** $(cos\theta + i sin\theta)^3$ show that $cos^3\theta = \frac{1}{4}cos3\theta + \frac{3}{4}cos\theta$ 4 Step 1: expand the brackets of $(cos \theta + i sin \theta)^3$: 2 $(cos\theta + i sin\theta)^3 = cos^3\theta + 3 cos^2\theta (i sin\theta) +$
3 cos(*i* sin θ)² + (*i* sin θ)³ ٦
1 3 −1 −2 $=$ $\cos^3 \theta + 3i\cos^2 \theta \sin \theta - 3\cos \theta \sin^2 \theta - i \sin^3 \theta$ −4 Step 2: simplify $(cos \theta + i sin \theta)^3$ using De Movire's Theorem: $(cos\theta + i sin\theta)^3 = cos3\theta + i sin3\theta$ Step 3: equating the real parts: $\cos^3 \theta - 3\cos \theta \sin^2 \theta = \cos 3\theta$ 1 $\cos^3\theta = \cos3\theta + 3\cos\theta (1 - \cos^2\theta)$ $\cos^3 \theta = \cos 3\theta + 3\cos \theta - 3\cos^3 \theta$ $4 \cos^3 \theta = \cos 3\theta + 3 \cos \theta$ $\cos^3 \theta = \frac{1}{4}$ $\frac{1}{4}cos3\theta + \frac{3}{4}$

■ $z_n = r^{1/n} cis \left(\frac{\theta + ((n-1) \times 2\pi)}{n} \right)$

 π 3

 \mathbf{z}_{4}

 $\frac{1}{4}cos\theta$

3-D VECTORS

2

 $-v = u - u + v - v = 0$

C ALCULUS

ATAR Math Specialist Units 3 & 4 Page 3 / 4 Created by Anthony Bochrinis - Sharpened®

INTEGRATION RULES Common Integrals $\int x^n dx =$ x^{n+1} $\frac{1}{n+1}$ $+ c$ $\int f'(x) \times [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1}$ $n+1$ $-+c$ $\int e^{f(x)} dx =$ e $e^{f(x)}$ $\frac{1}{f'(x)} + c$ $\int \frac{f'(x)}{f(x)}$ $\int \frac{f(x)}{f(x)} dx = \ln|f(x)| + c$ $sin(x) dx = -cos(x) + c$ $cos(x) dx = sin(x) + c$ \int sec²(x) dx = tan(x) + c **IMPLICIT DIFFERENTIATION 1** The point (a, b) lies on the curves $x^2 \frac{1}{2}$ and $xy = 6$. Prove that the tangents $\boldsymbol{\epsilon}$ ese curves at (a, b) are perpendicular. Differentiating $x^2 - y^2$ with respect to x: $x^2 - y^2 = 5$ → 2x – 2y $\frac{dy}{dx} = 0$ → $\frac{dy}{dx} = \frac{x}{y}$ \mathcal{Y} At point (a, b) the slope is $m_1 = \frac{x}{b}$ Differentiating $xy = 6$ with respect to x: $xy = 6 \rightarrow y + x \frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = -\frac{y}{x}$ $\boldsymbol{\chi}$ At point (a, b) the slope is $m_2 = -\frac{y}{x}$ s are perpendicular if $m_1\times m_2 = -1$ $m_1 \times m_2 = \frac{x}{y}$ $\frac{x}{y} \times -\frac{y}{x}$ $\frac{2}{x} = -1$ **Find the gradient at the point** $(2, -1)$ **on** the curve $x + x^2y^3 = -2$ rentiating with respect to x : $1 + 2xy^3 + x^2 3y^2 \frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = \frac{-1 - 2xy^3}{x^2 3y^2}$ $x^2 3y^2$ $x=2y=-1$ $2^2 \times 3 \times (-1)$ $=\frac{-1-2\times 2\times (-1)^3}{2^2\times 3\times (-1)^2}=\frac{1}{4}$ 4 **Determine the derivative of** $\sqrt{x} + \sqrt{y} = 1$ rentiating with respect to x : $+\frac{1}{2}$ $2\sqrt{y}$ $\frac{dy}{dx} = 0 \rightarrow \frac{dy}{dx} = -\sqrt{\frac{y}{x}}$ $\boldsymbol{\chi}$ **Find the co-ordinates of the points** where the tangent to the curve
 $x^2 + 2xy + 3y^2 = 18$ is horizontal. rentiating with respect to x : $2x + 2y + 2x \frac{dy}{dx} + 6y \frac{dy}{dx} = 0$ $(2x + 6y) = -2x - 2y = -\left(\frac{x + y}{2}\right)$ $\frac{x+y}{x+3y}$ Solve for when $\frac{dy}{dx} = 0$ hence $x = -y$ Substitute into original: $y^2 - 2y^2 + 3y^2 = 18$ 9 and hence, $y = \pm 3$, $x = \pm 3$ 80 $(20 + x)(20 - x)$ $40 - x^2$
 $80 = 20A - Ax + 20B + Bx$

Hence, $80 = 20A + 20B$ and $0 = B - A$ $=\frac{A(20-x)+B(20+x)}{40-x^2}$ $40 - x^2$ $A = 2, B = -2$ hence, integral is $\int \frac{2}{20+x} - \frac{2}{20-x} dx$ $a(|20 + x|) - 2ln(|20 - x|) + c$ **DIFFERENTIAL EQUATIONS A solution of a differential equation is** $y = Ae^{-2t} + Be^{-t}$. When $t = 0$, it given that $y = 0$ and $\frac{dy}{dx} = 1$. Find the values of A and B. dt $y = Ae^{-2t} + Be^{-t} \rightarrow \frac{dy}{dx} = -2Ae^{-2t} - Be^{-t}$ Using that $y = 0$ when $t = 0$: $0 = A + B$
Using that $\frac{dy}{dx} = 1$ when $t = 0$: $-1 = -2A - B$ Solving for A and $B: A = -1$ and $B = 1$ Hence, $y = -e^{-2t} + e^{-t}$ **Determine the equation of the graph from the following conditions:** • **Gradient of the tangent at all points is** given by $-\frac{x}{3y}$ re graph passes through $(3, 1)$ $\frac{dy}{dx} = -\frac{x}{3}$ $3y$ $\rightarrow \int 3ydy = \int -xdx$ $=-\frac{x^2}{2}$ $\frac{x}{2} + C \to 3y^2 = -x^2 + C$ μ ing initial condition (3,1): $2 = -(3)^2 + C \rightarrow 3 = -9 + C \rightarrow C = 12$ Hence, $2y^2 = 3x^2 + 12$ **Determine the general solution for** $y' = 6y^2x$ given that $x = 1$, $y = \frac{1}{25}$ $\frac{dy}{dx} = 6y^2x \rightarrow \int \frac{dy}{y^2}$ $\frac{dy}{y^2} = \int 6x dx \rightarrow -\frac{1}{y}$ $\frac{1}{y} = 3x^2 + c$ $\frac{3}{2}$ ying initial condition (1/25.1): $-25 = 3 + c \rightarrow c = -28$ hence, $-\frac{1}{y} = 3x^2 - 28$ $ke^{-at} = \frac{a}{b}$ = = = $rac{d}{dx}(\frac{1}{2})$ 1 ∴ 1 x^2 −1 $= \frac{1}{2}$ $=$ $\left[\frac{1}{2} \right]$ $-\left(\frac{1}{2}\right)$

LOGISTIC EQUATION Logistic Equation Differential Equation • Used in biology, mathematics, economics, chemistry, probability and statistics **Form** \overline{d} $\frac{dE}{dt} = aP - bP^2$ $Solution$ \overline{a} $b + ke^{-at}$ **<u>I**</u> Show that if $P = \frac{a}{b + ke^{-at}}$, then the derivative is in the form $\frac{dP}{dt} = aP - bP^2$ From these two equations, deduce that: $\frac{a}{p} - b$ $\frac{dP}{dt} = a\left(\frac{a}{b+k}\right)$ $\left(\frac{a}{b + ke^{-at}}\right) - b\left(\frac{a}{b + k}\right)$ $\left(\frac{a}{b + ke^{-at}}\right)^2$ $a²$ $\frac{b + ke^{-at}}{(b + ke^{-at})^2}$ a^2b $a²$ $\frac{a^2}{b + ke^{-at}}\left[\frac{1}{1}\right]$ $\frac{1}{1} - \frac{b}{b+k}$ $\overline{b + ke^{-at}}$ a^2 $\left[b+ke^{-at}-b\right]$ $\frac{b + ke^{-at}}{b + ke^{-at}}$ $=\frac{a^2ke^{-at}}{(b+1)(c+2)}$ $\frac{a^2ke^{-at}}{(b+ke^{-at})^2} = \frac{a^2\left(\frac{a}{p}-b\right)}{\left(\frac{a}{p}\right)^2}$ $\left(\frac{a}{p}\right)$ $\frac{P}{(a)}^2 = aP - bP^2$ $\frac{2}{dt}$ If $\frac{dP}{dt} = 0.2P - 0.002P^2$, determine *P* as **a** function of *t* from question 1 above **given that when** $t = 0$ **,** $P = 5$ **.** 0.2 $\frac{1}{0.002 + ke^0} = 5 \rightarrow k = 0.038$ ∴ $P = \frac{0.2}{0.002 + 0.6}$ $0.002 + 0.038e^{-0.2t}$ **VECTOR AND MOTION CALCULUS Displacement, Velocity and Acceleration** $Displacement$ $r(t)$ **Velocity** $v(t) = r'(t)$ **Acceleration** $q(t) = v'(t) = r''(t)$ **A** particle is moving in m/s along a **straight line and the acceleration of the** particle is modelled by $a(t) = 2 - e^{\frac{-x}{2}}$. When $v = 4$, $x = 0$. Find v^2 in terms of x. $\left(\frac{1}{2}v^2\right) = a(t) = 2 - e^{\frac{-3}{2}}$ $\frac{1}{2}v^2 = \int 2 - e^{\frac{-x}{2}} dx = 2x + 2e^{\frac{-x}{2}} + c$ When $v = 4$, $x = 0$ hence, $\frac{1}{2}(16) = 0 + 2 + c, c = 6$ $\frac{1}{2}v^2 = 2x + 2e^{\frac{-x}{2}} + 6v^2 = 4x + 4e^{\frac{-x}{2}} + 12$ **The position vector of a particle is initially** at $r = -j$ cm and is moving horizontally with velocity in cm/s according to the **equation** $v = (3 \cos t)i + (\sin t)i$ **What is the initial acceleration?** $a(t) = v'(t) = (-3\sin t)i + (\cos t)j$ **Find the displacement function.** $r(t) = \int v(t) dt = (3\sin t)i - (\cos t)j + c$ As initially $r = -j$, $c = 0$ hence: $r(t) = (3\sin t)i - (cost)i$ **<u>B</u>** Determine the cartesian equation of the **path of the particle.** $sint = \frac{x}{3}$ and $cost = -y$ $\sin^2 t + \cos^2 t = \left(\frac{x}{2}\right)$ $\left(\frac{x}{3}\right)^2 + (-y)^2 = 1$ $\frac{1}{9} + y^2 = 1$ **AREA BETWEEN CURVES**

