SADLER UNIT 3 MATHEMATICS SPECIALIST

WORKED SOLUTIONS

Chapter 7: Vector calculus

Exercise 7A

Question 1

Given $r = 2t^3 i + (3t + 1)j$

a The initial position vector occurs at t = 0.

$$\mathbf{r} = 2(0)^3 \mathbf{i} + (3 \times 0 + 1) \mathbf{j}$$
$$\mathbf{r} = \mathbf{j} \text{ m}$$

 $\mathbf{b} \qquad \mathbf{v} = 6t^2\mathbf{i} + 3\mathbf{j}$

When t = 3, velocity of the particle is $6 \times 3^2 \mathbf{i} + 3 \mathbf{j}$.

The particle has a velocity of $(54\mathbf{i} + 3\mathbf{j})$ m/s when t = 3.

 $|\mathbf{v}| = \sqrt{54^2 + 3^2} = 15\sqrt{13}$

The speed of the particle when t = 3 is $15\sqrt{3}$ m/s.

d $\mathbf{a} = 12t\mathbf{i}$

When t = 3 the acceleration of the particle is 36i m/s².

$$\mathbf{a} = 6t\mathbf{i} \text{ m/s}^2$$

a
$$\mathbf{v} = \int 6t\mathbf{i} dt = 3t^2\mathbf{i} + \mathbf{c}$$

When $t = 0$, $\mathbf{v} = -4\mathbf{i} + 6\mathbf{j}$, so $\mathbf{c} = -4\mathbf{i} + 6\mathbf{j}$
 $\mathbf{v} = \left[(3t^2 - 4)\mathbf{i} + 6\mathbf{j} \right] \text{m/s}$
When $t = 2$, $\mathbf{v} = \left[(3 \times 4 - 4)\mathbf{i} + 6\mathbf{j} \right] \text{m/s}$
 $\mathbf{v} = (8\mathbf{i} + 6\mathbf{j}) \text{m/s}$
 $|\mathbf{v}| = \sqrt{6^2 + 8^2} = \sqrt{100} = 10 \text{ m/s}$

b
$$\mathbf{r} = \int [(3t^2 - 4)\mathbf{i} + 6\mathbf{j}] dt = (t^3 - 4t)\mathbf{i} + 6t\mathbf{j} + c$$

When $t = 0$, $\mathbf{r} = (2\mathbf{i} + \mathbf{j})$ m
 $c = (2\mathbf{i} + \mathbf{j})$
 $\mathbf{r} = (t^3 - 4t)\mathbf{i} + 6t\mathbf{j} + 2\mathbf{i} + \mathbf{j} = (t^3 - 4t + 2)\mathbf{i} + (6t + 1)\mathbf{j}$
When $t = 2$, $\mathbf{r} = 2\mathbf{i} + 13\mathbf{j}$
The distance from $2\mathbf{i} + \mathbf{j}$ to $2\mathbf{i} + 13\mathbf{j}$ is $\sqrt{(2-2)^2 + (13-1)^2} = 12$ m.

Question 3

$$\mathbf{r} = 2t\mathbf{i} + (t-1)\mathbf{j}$$

a
$$\frac{d\mathbf{r}}{dt} = 2\mathbf{i} + \mathbf{j}$$
$$\left| \frac{d\mathbf{r}}{dt} \right| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$|\mathbf{r}| = \sqrt{(2t)^2 + (t-1)^2} = \sqrt{4t^2 + t^2 - 2t + 1} = (5t^2 - 2t + 1)^{\frac{1}{2}}$$

$$\frac{d}{dt}|\mathbf{r}| = \frac{1}{2}(5t^2 - 2t + 1)^{-\frac{1}{2}}(10t - 2) = \frac{10t - 2}{2\sqrt{5t^2 - 2t + 1}} = \frac{5t - 1}{\sqrt{5t^2 - 2t + 1}}$$

a
$$\mathbf{v}(1) = \frac{-1}{(1+1)^2}\mathbf{i} + 2\mathbf{j} = -0.25\mathbf{i} + 2\mathbf{j}$$

$$\mathbf{b} \qquad \mathbf{a}(t) = \frac{d}{dt} \left(\frac{-1}{(t+1)^2} \mathbf{i} + 2\mathbf{j} \right) = \frac{2}{(t+1)^3} \mathbf{i}$$

$$\mathbf{a}(1) = \frac{2}{(1+1)^3}\mathbf{i} = \frac{1}{4}\mathbf{i}$$

$$\mathbf{c} \qquad \mathbf{r}(t) = \int \left[\frac{-1}{(t+1)^2} \mathbf{i} + 2\mathbf{j} \right] dt = \int \left[-(t+1)^{-2} \mathbf{i} + 2\mathbf{j} \right] dt = (t+1)^{-1} \mathbf{i} + 2t\mathbf{j} + c$$

$$\mathbf{r}(0) = 3\mathbf{i} + 3\mathbf{j}$$

$$(1)^{-1}\mathbf{i} + 2(0)\mathbf{j} + c = 3\mathbf{i} + 3\mathbf{j}$$

$$c = 2\mathbf{i} + 3\mathbf{j}$$

$$\mathbf{r}(t) = \frac{1}{t+1}\mathbf{i} + 2t\mathbf{j} + 2\mathbf{i} + 3\mathbf{j}$$

$$\mathbf{r}(1) = \frac{1}{1+1}\mathbf{i} + 2\mathbf{j} + 2\mathbf{i} + 3\mathbf{j} = 2.5\mathbf{i} + 5\mathbf{j}$$

Question 5

a
$$\mathbf{r} = (t^2 - 5t + 1)\mathbf{i} + (1 - 14t + t^2)\mathbf{j}$$

$$\mathbf{v} = (2t - 5)\mathbf{i} + (2t - 14)\mathbf{j}$$

To be travelling parallel to the x-axis the \mathbf{j} component of the velocity vector must be zero.

This occurs when 2t-14=0.

The particle is travelling parallel to the x-axis when t = 7 seconds.

b
$$\mathbf{r} = (t^2 - 5t + 1)\mathbf{i} + (1 - 14t + t^2)\mathbf{j}$$

$$\mathbf{v} = (2t - 5)\mathbf{i} + (2t - 14)\mathbf{j}$$

To be travelling parallel to the y-axis the i component of the velocity vector must be zero.

This occurs when 2t - 5 = 0.

The particle is travelling parallel to the y-axis when t = 2.5 seconds.

a
$$\mathbf{v}(10) = 2\mathbf{i} + e^{0.1(10)}\mathbf{j} = 2\mathbf{i} + e\mathbf{j}$$

b
$$\mathbf{a}(t) = 0.1e^{0.1t}\mathbf{j}$$

 $\mathbf{a}(10) = 0.1e^{0.1(10)}\mathbf{j} = 0.1e\mathbf{j}$

$$\mathbf{c} \qquad \mathbf{r}(t) = \int (2\mathbf{i} + e^{0.1t}\mathbf{j}) dt = 2t\mathbf{i} + \frac{e^{0.1t}}{0.1}\mathbf{j} + \mathbf{c} = 2t\mathbf{i} + 10e^{0.1t}\mathbf{j} + \mathbf{c}$$

$$\mathbf{r}(0) = 10\mathbf{j}, \text{ so } \mathbf{c} = 0\mathbf{i} + 0\mathbf{j}$$

$$\mathbf{r}(t) = 2t\mathbf{i} + 10e^{0.1t}\mathbf{j}$$

$$\mathbf{r}(10) = 2(10)\mathbf{i} + 10e\mathbf{j} = 20\mathbf{i} + 10e\mathbf{j}$$

Question 7

$$\mathbf{r} = (8t - 12)\mathbf{i} + t^2\mathbf{j}$$

a When
$$t = 3$$
, $\mathbf{r} = [8(3) - 12]\mathbf{i} + 3^2\mathbf{j}$

r = 12i + 9j is the position of the particle.

$$|\mathbf{r}| = \sqrt{12^2 + 9^2} = 15$$
m

When t = 3 the particle is 15 metres from the origin.

$$\mathbf{b} \qquad \mathbf{v} = 8\mathbf{i} + 2t\mathbf{j}$$

When
$$t = 3$$
, $\mathbf{v} = (8\mathbf{i} + 6\mathbf{j}) \,\text{m/s}$

When t = 3 the velocity of the particle is $(8\mathbf{i} + 6\mathbf{j}) \text{ m/s}$.

$$|\mathbf{v}| = \sqrt{8^2 + 6^2} = 10 \,\text{m/s}$$

When t = 3, the speed of the particle is 10 m/s.

$$d \tan \theta = \frac{6}{8}$$

 $\theta = 37^{\circ}$ (to the nearest degree)

$$\mathbf{r} = t^3 \mathbf{i} + (2t^2 - 1)\mathbf{j}$$

$$\mathbf{a} \qquad \mathbf{v} = 3t^2\mathbf{i} + 4t\mathbf{j}$$

When
$$t = 2$$
, $\mathbf{v} = 3(2)^2 \mathbf{i} + 4(2) \mathbf{j} = 12 \mathbf{i} + 8 \mathbf{j}$

When
$$t = 2$$
, $|\mathbf{v}| = \sqrt{12^2 + 8^2} = 4\sqrt{13}$ m/s

When t = 2 the speed of the particle is $4\sqrt{13}$ m/s.

$$\mathbf{b} \qquad \mathbf{a} = 6t\mathbf{i} + 4\mathbf{j}$$

When
$$t = 3$$
, $\mathbf{a} = 18\mathbf{i} + 4\mathbf{j}$.

When t = 3 the acceleration vector is $(18\mathbf{i} + 4\mathbf{j}) \,\text{m/s}^2$

c When
$$t = 2$$
, $a = 12i + 4j$

$$\mathbf{v} \cdot \mathbf{a} = (12\mathbf{i} + 8\mathbf{j}) \cdot (12\mathbf{i} + 4\mathbf{j}) = 12 \times 12 + 8 \times 4 = 176$$

d The angle between **v** and **a** can be found using the scalar product.

$$|\mathbf{a}| = \sqrt{12^2 + 4^2} = 4\sqrt{10}$$

$$\cos \theta = \frac{176}{4\sqrt{13} \times 4\sqrt{10}} \approx 0.9648$$

 $\theta = 15.3^{\circ}$ (correct to one decimal place)

When t = 2, the angle between v and a is 15.3°.

Given $\mathbf{v} = 2t\mathbf{i} + (3t^2 - 1)\mathbf{j} - 3\mathbf{k}$, the velocity vector of a particle.

a The initial speed of the particle, when t = 0.

When
$$t = 0$$
, $\mathbf{v} = -\mathbf{j} - 3\mathbf{k}$

$$|\mathbf{v}| = \sqrt{1^2 + 3^2} = \sqrt{10} \text{ m/s}$$

The initial speed of the particle is $\sqrt{10}$ m/s.

b When t = 2, v = 4i + 11j - 3k

$$|\mathbf{v}| = \sqrt{4^2 + 11^2 + (-3)^2} = \sqrt{146} \text{ m/s}$$

The speed of the particle when t = 2 is $\sqrt{146}$ m/s.

 $\mathbf{c} \qquad \mathbf{a} = 2\mathbf{i} + 6t\mathbf{j}$

When t = 2 the acceleration of the particle is $(2\mathbf{i} + 12\mathbf{j}) \,\text{m/s}^2$.

 $\mathbf{d} \qquad \mathbf{r} = \iint 2t\mathbf{i} + (3t^2 - 1)\mathbf{j} - 3\mathbf{k} dt = t^2\mathbf{i} + (t^3 - t)\mathbf{j} - 3t\mathbf{k} + \mathbf{c}$

When t = 2, the position vector of the particle is $(-4\mathbf{i} + 10\mathbf{j})$ m.

$$t^{2}$$
i + $(t^{3} - t)$ **j** - $3t$ **k** + **c** = $(-4$ **i** + 10 **j**)

$$4i + 6j - 6k + c = -4i + 10j$$

$$\mathbf{c} = -8\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$$

$$\mathbf{r} = t^2 \mathbf{i} + (t^3 - t)\mathbf{j} - 3t\mathbf{k} - 8\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$$

=
$$(t^2 - 8)\mathbf{i} + (t^3 - t + 4)\mathbf{j} + (6 - 3t)\mathbf{k}$$

When t = 5, the particle has position vector $(17\mathbf{i} + 124\mathbf{j} - 9\mathbf{k})$ m.

$$\mathbf{r} = (t^2 - 6t - 16)\mathbf{i} + t^2\mathbf{j}$$

a The particle is on the y-axis when the i component of the position vector must be zero.

$$t^2 - 6t - 16 = 0$$

$$(t-8)(t+2) = 0$$

t = 8, -2 so 8 is the only valid solution.

The particle is on the y-axis after 8 seconds.

b The particle moves parallel to the y-axis when the **i** component of the velocity vector is zero.

$$\mathbf{v} = (2t - 6)\mathbf{i} + 2t\mathbf{j}$$
. This occurs when $2t - 6 = 0$, so when $t = 3$.

When $\mathbf{v} \cdot \mathbf{a} = 0$, the velocity of the particle will be perpendicular to the acceleration of the vehicle.

$$\mathbf{a} = 2\mathbf{i} + 2\mathbf{j}$$

$$\mathbf{v} \cdot \mathbf{a} = (2t - 6) \times 2 + 2t \times 2$$

$$8t - 12 = 0$$

$$t = 1.5$$

The velocity of the particle will be perpendicular to the acceleration when t = 1.5.

Question 11

$$\mathbf{r} = 3\mathbf{i} + 2t\mathbf{j} + (t^2 - 4t + 10)\mathbf{k}$$

$$\mathbf{v} = 2\mathbf{j} + (2t - 4)\mathbf{k}$$

$$\mathbf{a} = 2\mathbf{k}$$

The minimum distance from the particle to the x-y plane is the distance from $\langle 3, 2t, t^2 - 4t + 10 \rangle$, i.e., $\langle 3, 2t, 0 \rangle$.

Hence, the minimum distance will be the minimum value of $t^2 - 4t + 10$.

$$t^2 - 4t + 10 = (t - 2)^2 + 6$$
, so the minimum value is when $t = 2$.

$$\mathbf{r} = (3\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}) \,\mathrm{m}$$

$$\mathbf{v} = 2\mathbf{j} \, \mathbf{m/s}$$

$$\mathbf{a} = 2\mathbf{k} \, \mathbf{m/s}^2$$

Given $\mathbf{a} = 2\mathbf{j}$

a $\mathbf{v} = 2t\mathbf{j} + \mathbf{c}$, when t = 0 $\mathbf{v} = 2\mathbf{i} - 8\mathbf{j}$ $\mathbf{v} = [2\mathbf{i} + (2t - 8)\mathbf{j}] \text{ m/s}$

The velocity of the body at time t seconds is $\mathbf{v} = [2\mathbf{i} + (2t - 8)\mathbf{j}] \text{ m/s}$.

- **b** $\mathbf{r} = 2t\mathbf{i} + (t^2 8t)\mathbf{j} + \mathbf{c}$ and when t = 0, $\mathbf{r} = \mathbf{i} + 20\mathbf{j}$ $\mathbf{c} = \mathbf{i} + 20\mathbf{j}$ $\mathbf{r} = [(2t+1)\mathbf{i} + (t^2 - 8t + 20)\mathbf{j}]\mathbf{m}$
- When t = 3, $[(2t+1)\mathbf{i} + (t^2 8t + 20)\mathbf{j}] \mathbf{m} = [(2(3)+1)\mathbf{i} + (3^2 8(3) + 20)\mathbf{j}] \mathbf{m}$ When t = 3, the position vector of the body is $(7\mathbf{i} + 5\mathbf{j}) \mathbf{m}$ The body will be $\sqrt{7^2 + 5^2} = \sqrt{74} \mathbf{m}$
- **d** When t = 2, $\mathbf{v} = [2\mathbf{i} 4\mathbf{j}] \text{ m/s}$. $|\mathbf{v}| = \sqrt{2^2 + 4^2} = 2\sqrt{5} \text{ m/s}$
- **e** Minimum height occurs when the co-efficient of \mathbf{j} is at its minimum value.

$$t^2 - 8t + 20 = (t - 4)^2 + 4$$

The minimum height occurs when t = 4, the height is 4 m.

$$\mathbf{f} \qquad \mathbf{r} = [(2t+1)\mathbf{i} + (t^2 - 8t + 20)\mathbf{j}] \,\mathbf{m}$$

$$x = 2t+1 \Rightarrow t = \frac{1}{2}(x-1)$$

$$y = t^2 - 8t + 20 = \frac{1}{4}(x-1)^2 - 4(x-1) + 20$$

$$4y = x^2 - 2x + 1 - 16x + 16 + 80 = x^2 - 18x + 97$$

$$\mathbf{a} = \cos t \, \mathbf{i} + 2 \, \mathbf{j}$$

$$\mathbf{v} = \sin t \, \mathbf{i} + 2t \mathbf{j} + \mathbf{c}$$

When t = 0, the velocity vector is **j** so $\mathbf{c} = \mathbf{j}$.

Hence
$$\mathbf{v} = (\sin t)\mathbf{i} + (2t+1)\mathbf{j}$$

$$\mathbf{r} = (-\cos t)\mathbf{i} + (t^2 + t)\mathbf{j} + \mathbf{c}$$

When t = 0, the position vector is $4\mathbf{i} - 6\mathbf{j}$ so $\mathbf{c} = 3\mathbf{i} - 6\mathbf{j}$.

$$\mathbf{r} = (-\cos t + 3)\mathbf{i} + (t^2 + t - 6)\mathbf{j}$$

a The particle crosses the x-axis when the \mathbf{j} component of the position vector is 0.

$$t^2 + t - 6 = 0$$

$$(t+3)(t-2) = 0$$

t = -3, 2 so the only valid solution is t = 2.

b The particle crosses the y-axis when the **i** component of the position vector is 0.

$$-\cos t + 3 = 0$$

$$\cos t = 3$$

There are no values of t for which $\cos t = 3$.

So particle does not cross the x-axis.

Question 14

$$\mathbf{a} = -4\sin 2t\,\mathbf{i} + 2\mathbf{j} + e^t\mathbf{k}$$

$$\mathbf{v} = 2\cos 2t\,\mathbf{i} + 2t\mathbf{j} + e^t\mathbf{k} + \mathbf{c}$$

When t = 0 the particle is at rest, so $\mathbf{v} = 0$.

$$\mathbf{v} = 2\mathbf{i} + \mathbf{k} + \mathbf{c}$$
, so $\mathbf{c} = -2\mathbf{i} - \mathbf{k}$

$$\mathbf{v} = (2\cos 2t - 2)\mathbf{i} + 2t\mathbf{j} + (e^t - 1)\mathbf{k}$$

$$\mathbf{r} = (\sin 2t - 2t)\mathbf{i} + t^2\mathbf{j} + (e^t - t)\mathbf{k} + \mathbf{c}$$

When t = 0, the particle is at the origin, so $\mathbf{r} = 0$.

$$\mathbf{r} = (\sin 2t - 2t)\mathbf{i} + t^2\mathbf{j} + (e^t - t)\mathbf{k} + \mathbf{c}$$
, so $\mathbf{c} = -\mathbf{k}$

$$\mathbf{r} = (\sin 2t - 2t)\mathbf{i} + t^2\mathbf{j} + (e^t - t - 1)\mathbf{k}$$

When
$$t = \pi$$
, $\mathbf{r} = \begin{bmatrix} -2\pi \mathbf{i} + \pi^2 \mathbf{j} + (e^{\pi} - \pi - 1)\mathbf{k} \end{bmatrix} \mathbf{m}$

$$\mathbf{r} = 2\sin 3t\mathbf{i} + 2\cos 3t\mathbf{j}$$

a The body crosses the x-axis when the **j** component of the position vector is zero.

$$2\cos 3t = 0$$
$$3t = \frac{\pi}{2}$$
$$t = \frac{\pi}{6} \text{ seconds}$$

b Differentiate the expression for the position vector with respect to t to obtain the expression for the velocity at time t, $(6\cos 3t\mathbf{i} - 6\sin 3t\mathbf{j})$ m/s.

Differentiate the expression for the velocity vector with respect to t to obtain the expression for the acceleration at time t, $(-18\sin 3t\mathbf{i} - 18\cos 3t\mathbf{j})$ m/s².

c $(6\cos 3t\mathbf{i} - 6\sin 3t\mathbf{j}) \cdot (-18\sin 3t\mathbf{i} - 18\cos 3t\mathbf{j}) = -108(\sin 3t)(\cos 3t) + 108(\sin 3t)(\cos 3t) = 0$

The scalar product of the velocity and acceleration is zero, hence the velocity is perpendicular to the acceleration for all values of t.

Question 16

$$\mathbf{a} = 2\sin(0.5t)\mathbf{i} - 2\cos(0.5t)\mathbf{j}$$

$$\mathbf{v} = -4\cos(0.5t)\mathbf{i} - 4\sin(0.5t)\mathbf{j} + \mathbf{c}$$

When
$$t = 0$$
, $\mathbf{v} = -4\mathbf{i}$ (given)

Substituting t = 0 into the equation we have for v gives $\mathbf{v} = -4\mathbf{i} + \mathbf{c}$

$$\mathbf{c} = 0$$

$$\mathbf{v} = [-4\cos(0.5t)]\mathbf{i} + [-4\sin(0.5t)]\mathbf{j}$$

$$\mathbf{r} = [-8\sin(0.5t)]\mathbf{i} + [8\cos(0.5t)]\mathbf{j} + \mathbf{c}$$

When t = 0, the position vector is $2\mathbf{i} + 8\mathbf{j}$ (given)

Substituting t = 0 into the equation we have for **r** gives $\mathbf{r} = 8\mathbf{j} + \mathbf{c}$

$$c = 2i$$

$$\mathbf{r} = [2 - 8\sin(0.5t)]\mathbf{i} + [8\cos(0.5t)]\mathbf{j}$$

When
$$t = \frac{\pi}{3}$$
, $\mathbf{r} = -2\mathbf{i} + 4\sqrt{3}\mathbf{j}$

The distance from $2\mathbf{i}$ to $-2\mathbf{i} + 4\sqrt{3}\mathbf{j}$ is:

$$\sqrt{(-4)^2 + (4\sqrt{3})^2} = 8 \,\mathrm{m}$$

The object is 8 m from point B.

Exercise 7B

Question 1

From the information given, the velocity = (u + at)i m/s

By integrating and using the information given, the position vector = $\left(ut + \frac{at^2}{2}\right)$ **i** m.

Question 2

$$\mathbf{a} = -9 \cdot 8\mathbf{j}$$

$$\mathbf{v} = -9 \cdot 8t\mathbf{j} + \mathbf{c}$$

When
$$t = 0$$
, $\mathbf{v} = 14\mathbf{i} + 35\mathbf{j}$

$$\mathbf{v} = 14\mathbf{i} + (35 - 9.8t)\mathbf{j}$$

 $\mathbf{r} = 14t\mathbf{i} + (35t - 4.9t^2)\mathbf{j} + \mathbf{c}$, but as its position is O when t = 0, $\mathbf{c} = 0$.

The expression for the position vector of the object is $[14t\mathbf{i} + (35t - 4.9t^2)\mathbf{j}]$ m.

When t = 5, the body is at position vector $70\mathbf{i} - 52.5\mathbf{j}$.

The distance from O when t = 5 is $\sqrt{50^2 + (-52.5)^2} = 87.5 \text{ m}$

$$x = 14t \Rightarrow t = \frac{x}{14}$$

$$y = 35t - 4.9t^2$$

Substituting t gives

$$y = 35\left(\frac{x}{14}\right) - 4.9\left(\frac{x}{14}\right)^2 = \frac{5}{2}x - \frac{1}{40}x^2$$

- **a** Acceleration of the particle = -10**j** m/s²
- **b** Initial velocity of the particle = $(80\cos 60^{\circ}\mathbf{i} + 80\sin 60^{\circ}\mathbf{j})$ m/s = $(40\mathbf{i} + 40\sqrt{3}\mathbf{j})$ m/s
- **c** We know that $\mathbf{a} = -10\mathbf{j}$ where \mathbf{a} m/s² is the acceleration.
 - Thus $\mathbf{v} = -10t\mathbf{j} + \mathbf{c}$ where \mathbf{v} m/s is the velocity.
 - When t = 0 $\mathbf{v} = 40\mathbf{i} + 40\sqrt{3}\mathbf{j}$ $\therefore \mathbf{c} = 40\mathbf{i} + 40\sqrt{3}\mathbf{j}$
 - Thus $\mathbf{v} = 40\mathbf{i} + \left(40\sqrt{3} 10t\right)\mathbf{j}$

The velocity of the particle t seconds after projection is $\mathbf{v} = 40\mathbf{i} + \left(40\sqrt{3} - 10t\right)\mathbf{j}$ m/s.

- We know that $\mathbf{v} = 40\mathbf{i} + \left(40\sqrt{3} 10t\right)\mathbf{j}$
- Thus $\mathbf{r} = 40t \,\mathbf{i} + \left(40\sqrt{3}t 5t^2\right)\mathbf{j} + \mathbf{c}$
- When t = 0 $\mathbf{r} = 0\mathbf{i} + 0\mathbf{j}$ $\therefore \mathbf{c} = 0\mathbf{i} + 0\mathbf{j}$

The position of the particle t seconds after projection is $\left[40t\mathbf{i} + \left(40\sqrt{3}t - 5t^2\right)\mathbf{j}\right]$ m.

d The particle is at the horizontal surface when the **j** component of the particle is zero.

$$40\sqrt{3}\,t - 5t^2 = 0$$

$$t\left(40\sqrt{3} - 5t\right) = 0$$

$$t = 0, 8\sqrt{3}$$

The particle returns to the horizontal surface at $t = 8\sqrt{3}$ s.

e When $t = 8\sqrt{3}$, $\mathbf{r} = 40(8\sqrt{3})\mathbf{i} + \left[40\sqrt{3} \times 8\sqrt{3} - 5(8\sqrt{3})^2\right]\mathbf{j}$

$$\mathbf{r} = 320\sqrt{3}\,\mathbf{i}\,\mathbf{m}$$

The horizontal distance from projection to landing is $320\sqrt{3}$ m.

a Acceleration of the particle $\mathbf{a} = -9.8 \mathbf{j} \,\mathrm{m/s^2}$

Thus
$$\mathbf{v} = (-9.8t\mathbf{j} + \mathbf{c}) \text{ m/s}$$

Initial velocity of the particle $\mathbf{v} = (42\cos\theta\mathbf{i} + 42\sin\theta\mathbf{j}) \text{ m/s}$

$$\therefore \mathbf{c} = 42\cos\theta \mathbf{i} + 42\sin\theta \mathbf{j}$$

Thus
$$\mathbf{v} = (42\cos\theta)\mathbf{i} + (42\sin\theta - 9.8t)\mathbf{j} \text{ m/s}$$

The position vector is then $\mathbf{r} = \left[42t \cos \theta \mathbf{i} + (42t \sin \theta - 4.9t^2) \mathbf{j} \right] \mathbf{m}$

b $42t\cos\theta = 120 \text{ and } 42t\sin\theta - 4.9t^2 = 0$

$$t = \frac{120}{42\cos\theta}$$
 and $t(42\sin\theta - 4.9t) = 0$

$$t = 0, \ t = \frac{42\sin\theta}{4.9}$$

$$\frac{120}{42\cos\theta} = \frac{42\sin\theta}{4.9}$$

$$\sin\theta\cos\theta = \frac{1}{3}$$

$$2\sin\theta\cos\theta = \frac{2}{3}$$

$$\sin 2\theta = \frac{2}{3}$$

$$2\theta = 41.81, 138.19$$

$$\theta = 20.9^{\circ}, 69.1^{\circ}$$

The acceleration of the particle is $-g\mathbf{j}\mathbf{m}/s^2$.

Initial velocity of the particle is $(u\cos\theta \mathbf{i} + u\sin\theta \mathbf{j})$ m/s

The velocity of the particle t seconds after projection is $\int (-g\mathbf{j})dt = -gt\mathbf{j} + \mathbf{c}$ а

When
$$t = 0$$
, $\mathbf{v} = u \cos \theta^{\circ} \mathbf{i} + u \sin \theta^{\circ}$ $\therefore \mathbf{c} = u \cos \theta^{\circ} \mathbf{i} + u \sin \theta^{\circ}$

Thus
$$\mathbf{v} = u \cos \theta^{\circ} \mathbf{i} + (u \sin \theta^{\circ} - gt) \mathbf{j}$$

 $\mathbf{r} = \int \left[u \cos \theta \mathbf{i} + (u \sin \theta - gt) \mathbf{j} \right] dt = ut \cos \theta \mathbf{i} + \left(ut \sin \theta - \frac{1}{2} gt^2 \right) \mathbf{j} + \mathbf{c}$ b

When
$$t = 0$$
, $\mathbf{r} = 0$ \therefore $\mathbf{c} = 0$

$$\mathbf{r} = ut\cos\theta^{\circ}\mathbf{i} + \left(ut\sin\theta^{\circ} - \frac{1}{2}gt^{2}\right)\mathbf{j}$$

The particle returns to the horizontal surface when the coefficient of the j component is 0. C

$$-\left(ut\sin\theta^{\circ} - \frac{1}{2}gt^{2}\right) = 0$$

$$ut\sin\theta^{\circ} = \frac{1}{2}gt^{2}$$

$$2ut\sin\theta^{\circ} = gt^{2}$$

$$t = \frac{2u\sin\theta^{\circ}}{g} \text{ seconds}$$

When $t = \frac{2u\sin\theta^{\circ}}{g}$, $\mathbf{r} = u\frac{2u\sin\theta^{\circ}}{g}\cos\theta^{\circ}\mathbf{i} - 0\mathbf{j}$ d $2\sin\theta\cos\theta = \sin 2\theta$

so
$$\mathbf{r} = \frac{u^2 \sin 2\theta^{\circ}}{g} \mathbf{i}$$
 metres

The maximum value of $\sin 2\theta^{\circ}$ is 1. е

> This would give the maximum horizontal distance from O to the point of landing back on the horizontal plane.

$$\sin 2\theta^{\circ} = 1$$
$$2\theta^{\circ} = 90^{\circ}$$
$$\theta = 45$$

Given $\mathbf{r}(t) = 2\cos(0.5t)\mathbf{i} + 2\sin(0.5t)\mathbf{j}$

$$\mathbf{a} \qquad \mathbf{v}(t) = \left[-\sin(0.5t)\mathbf{i} + \cos(0.5t)\mathbf{j} \right] \text{m/s}$$

$$\mathbf{a}(t) = [-0.5\cos(0.5t)\mathbf{i} - 0.5\sin(0.5t)\mathbf{j}] \text{ m/s}^2$$

b
$$|\mathbf{v}(t)| = \sqrt{\left[-\sin(0.5t)\right]^2 + \left[\cos(0.5t)\right]^2} = 1$$

$$\mathbf{v} \cdot \mathbf{a} = 0.5 \sin(0.5t) \cos(0.5t) - 0.5 \sin(0.5t) \cos(0.5t) = 0$$

Velocity is always perpendicular to acceleration.

d
$$\mathbf{r}(t) = 2\cos(0.5t)\mathbf{i} + 2\sin(0.5t)\mathbf{j}$$

$$\mathbf{a}(t) = -0.5\cos(0.5t)\mathbf{i} - 0.5\sin(0.5t)\mathbf{j}$$

$$\mathbf{a}(t) = -\frac{1}{4}\mathbf{r}(t)$$

Given
$$\mathbf{a}(t) = -k\mathbf{r}(t)$$

$$k = \frac{1}{4}$$

e With k > 0, the acceleration is always directed towards the centre of the circle, (0, 0)

Question 7

Given
$$\mathbf{v}(t) = -\frac{5\pi}{2}\cos\left(\frac{\pi}{2}t\right)\mathbf{i} - \frac{5\pi}{2}\sin\left(\frac{\pi}{2}t\right)\mathbf{j}$$

a
$$\mathbf{r}(t) = \int \left[-\frac{5\pi}{2} \cos\left(\frac{\pi}{2}t\right) \mathbf{i} - \frac{5\pi}{2} \sin\left(\frac{\pi}{2}t\right) \mathbf{j} \right] dt$$

$$\mathbf{r}(t) = -5\sin\left(\frac{\pi}{2}t\right)\mathbf{i} + 5\cos\left(\frac{\pi}{2}t\right)\mathbf{j} + \mathbf{c}$$

$$\mathbf{r}(0) = 5\mathbf{j}$$
 so $\mathbf{c} = 0$

$$\mathbf{r}(t) = -5\sin\left(\frac{\pi}{2}t\right)\mathbf{i} + 5\cos\left(\frac{\pi}{2}t\right)\mathbf{j}$$

b
$$\mathbf{r}(3) = -5\sin\left(\frac{3\pi}{2}\right)\mathbf{i} + 5\cos\left(\frac{3\pi}{2}\right)\mathbf{j} = -5(-1)\mathbf{i} + 5(0)\mathbf{j} = 5\mathbf{i}$$

C

$$\mathbf{d}$$

$$\int_{0}^{3} \left[-\frac{5\pi}{2} \cos\left(\frac{\pi}{2}t\right) \mathbf{i} - \frac{5\pi}{2} \sin\left(\frac{\pi}{2}t\right) \mathbf{j} \right] dt = \left[-5\sin\left(\frac{\pi}{2}t\right) \mathbf{i} + 5\cos\left(\frac{\pi}{2}t\right) \mathbf{j} \right]_{0}^{3}$$

$$= -5\sin\left(\frac{3\pi}{2}\right) \mathbf{i} + 5\cos\left(\frac{3\pi}{2}\right) \mathbf{j} - \left(-5\sin 0 \mathbf{i} + 5\cos 0 \mathbf{j}\right)$$

$$= 5\mathbf{i} + 0\mathbf{j} - (0\mathbf{i} + 5\mathbf{j})$$

$$= (5\mathbf{i} - 5\mathbf{j}) \,\mathrm{m}$$

This is the vector from $\mathbf{r}(0)$ to $\mathbf{r}(3)$.

It is the displacement vector for t = 0 to t = 3.

$$\left| \int_0^3 \mathbf{v}(t) dt \right| = \left| 5\mathbf{i} - 5\mathbf{j} \right| = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$$

This is the magnitude of the displacement from t = 0 to t = 3.

$$\int_{0}^{3} |\mathbf{v}(t)| dt = \int_{0}^{3} \left| -\frac{5\pi}{2} \cos\left(\frac{\pi}{2}t\right) \mathbf{i} - \frac{5\pi}{2} \sin\left(\frac{\pi}{2}t\right) \mathbf{j} \right| dt$$

$$= \int_{0}^{3} \sqrt{\left(-\frac{5\pi}{2} \cos\frac{\pi}{2}t\right)^{2} + \left(-\frac{5\pi}{2} \sin\frac{\pi}{2}t\right)^{2}} dt$$

$$= \int_{0}^{3} \sqrt{\left(\frac{25\pi^{2}}{4} \cos^{2}\frac{\pi}{2}t\right) + \left(\frac{25^{2}\pi^{2}}{4} \sin^{2}\frac{\pi}{2}t\right)} dt$$

$$= \int_{0}^{3} \sqrt{\frac{25\pi^{2}}{4} \left(\cos^{2}\frac{\pi}{2}t + \sin^{2}\frac{\pi}{2}t\right)} dt = \int_{0}^{3} \sqrt{\frac{25\pi^{2}}{4}} dt$$

$$= \int_{0}^{3} \frac{5\pi}{2} dt = \left[\frac{5\pi}{2}t\right]_{0}^{3} = \frac{15\pi}{2}$$

This is the distance travelled from t = 0 to t = 3, i.e. three quarters of the circumference.

а

$$\begin{cases} x = -2\sin\left(\frac{\pi}{6}t\right) \\ y = 3\cos\left(\frac{\pi}{6}t\right) \end{cases} \Rightarrow \begin{cases} \frac{x}{-2} = \sin\left(\frac{\pi}{6}t\right) \\ \frac{y}{3} = \cos\left(\frac{\pi}{6}t\right) \end{cases}$$

$$\left(\frac{x}{-2}\right)^2 + \left(\frac{y}{3}\right)^2 = \left[\sin\left(\frac{\pi}{6}t\right)\right]^2 + \left[\cos\left(\frac{\pi}{6}t\right)\right]^2$$

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$\frac{36x^2}{4} + \frac{36y^2}{9} = 36$$

$$9x^2 + 4y^2 = 36$$

$$\mathbf{r}(t) = -2\sin\left(\frac{\pi}{6}t\right)\mathbf{i} + 3\cos\left(\frac{\pi}{6}t\right)\mathbf{j}$$

$$\mathbf{v}(t) = -\frac{\pi}{3}\cos\left(\frac{\pi}{6}t\right)\mathbf{i} - \frac{\pi}{2}\sin\left(\frac{\pi}{6}t\right)\mathbf{j}$$

$$\mathbf{v}(8) = -\frac{\pi}{3}\cos\left(\frac{4\pi}{3}\right)\mathbf{i} - \frac{\pi}{2}\sin\left(\frac{4\pi}{3}\right)\mathbf{j} = \frac{\pi}{6}\mathbf{i} + \frac{\sqrt{3}\pi}{4}\mathbf{j}$$

$$\tan\theta = \frac{\sqrt{3}\pi}{\frac{4}{\pi}} = \frac{3\sqrt{3}}{2}$$

$$\theta = 1.20 \, \text{radians}$$

$$\mathbf{r}(t) = -2\sin\left(\frac{\pi}{6}t\right)\mathbf{i} + 3\cos\left(\frac{\pi}{6}t\right)\mathbf{j}$$

$$\mathbf{v}(t) = -\frac{\pi}{3}\cos\left(\frac{\pi}{6}t\right)\mathbf{i} - \frac{\pi}{2}\sin\left(\frac{\pi}{6}t\right)\mathbf{j}$$

$$\mathbf{a}(t) = \frac{\pi^2}{18}\sin\left(\frac{\pi}{6}t\right)\mathbf{i} - \frac{\pi^2}{12}\cos\left(\frac{\pi}{6}t\right)\mathbf{j} = -\frac{\pi^2}{36}\left[-2\sin\left(\frac{\pi}{6}t\right)\mathbf{i} + 3\cos\left(\frac{\pi}{6}t\right)\mathbf{j}\right] = -\frac{\pi^2}{36}\mathbf{r}(t)$$

$$k = -\frac{\pi^2}{36}$$

Acceleration is always towards (0, 0).

$$\mathbf{a}(t) = (-9.8 \sin 30^{\circ} \mathbf{i} - 9.8 \cos 30^{\circ} \mathbf{j}) \,\text{m/s}^{2} = \left(-\frac{49}{10} \mathbf{i} - \frac{49\sqrt{3}}{10} \mathbf{j}\right)$$

$$\mathbf{v}(t) = -\frac{49}{10} t \,\mathbf{i} - \frac{49\sqrt{3}}{10} t \,\mathbf{j} + \mathbf{c}$$

$$\mathbf{v}(0) = 49 \cos 30^{\circ} \mathbf{i} + 49 \cos 30^{\circ} \mathbf{j}$$

$$\mathbf{c} = 49 \cos 30^{\circ} \mathbf{i} + 49 \sin 30^{\circ} \mathbf{j}$$

$$\mathbf{v}(t) = -\frac{49}{10} t \,\mathbf{i} - \frac{49\sqrt{3}}{10} t \,\mathbf{j} + 49 \cos 30^{\circ} \mathbf{i} + 49 \sin 30^{\circ} \mathbf{j}$$

$$= \left(\frac{49\sqrt{3}}{2} - \frac{49}{10} t\right) \mathbf{i} + \left(\frac{49}{2} - \frac{49\sqrt{3}}{10} t\right) \mathbf{j}$$

$$\mathbf{r}(t) = \left(\frac{49\sqrt{3}}{2}t - \frac{49}{20}t^2\right)\mathbf{i} + \left(\frac{49}{2}t - \frac{49\sqrt{3}}{20}t^2\right)\mathbf{j} + \mathbf{c}$$

$$\mathbf{r}(0) = 0\mathbf{i} + 0\mathbf{j}$$

$$\mathbf{r}(t) = \left(\frac{49\sqrt{3}}{2}t - \frac{49}{20}t^2\right)\mathbf{i} + \left(\frac{49}{2}t - \frac{49\sqrt{3}}{20}t^2\right)\mathbf{j}$$
$$= \frac{49}{20}t\left(10\sqrt{3} - t\right)\mathbf{i} + \frac{49}{20}t\left(10 - \sqrt{3}t\right)\mathbf{j}$$

The particle will hit the plane when the co-efficient of the **j** component is 0.

$$\frac{49}{2}t - \frac{49\sqrt{3}}{20}t^2 = 0$$
$$t\left(\frac{49}{2} - \frac{49\sqrt{3}}{20}t\right) = 0$$
$$t = 0, \frac{10\sqrt{3}}{3}$$

So the particle will hit the plane after $\frac{10\sqrt{3}}{3}$ seconds.

$$\mathbf{a} \qquad \mathbf{v}(t) = (1 - \cos t)\mathbf{i} + \sin t \,\mathbf{j}$$

$$\mathbf{r}(t) = (t - \sin t)\mathbf{i} - \cos t \,\mathbf{j} + \mathbf{c}$$

When t = 0, point *P* lies at the origin.

$$\mathbf{r}(0) = 0\mathbf{i} - \mathbf{j} + \mathbf{c}$$

$$c = j$$

$$\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}$$

$$\mathbf{b} \qquad \mathbf{r}(0) = 0\mathbf{i} + 0\mathbf{j}$$

$$\mathbf{r}(\pi) = (\pi - \sin \pi)\mathbf{i} + (1 - \cos \pi)\mathbf{j} = \pi\mathbf{i} + 2\mathbf{j}$$

Looking at the value of the vertical components, the diameter is 2 m.

c
$$i r(0) = 0i + 0j$$

$$\mathbf{v}(0) = 0\mathbf{i} + 0\mathbf{j}$$

$$\mathbf{ii} \qquad \mathbf{r} \left(\frac{\pi}{2} \right) = \left(\frac{\pi}{2} - 1 \right) \mathbf{i} + \mathbf{j}$$

$$\mathbf{v}\left(\frac{\pi}{2}\right) = \mathbf{i} + \mathbf{j}$$

iii
$$\mathbf{r}(\pi) = \pi \mathbf{i} + 2 \mathbf{j}$$

$$\mathbf{v}(t) = 2\mathbf{i} + 0\mathbf{j}$$

iv
$$\mathbf{r}\left(\frac{3\pi}{2}\right) = \left(\frac{3\pi}{2} + 1\right)\mathbf{i} + \mathbf{j}$$

$$\mathbf{v}\left(\frac{3\pi}{2}\right) = \mathbf{i} - \mathbf{j}$$

d

Given
$$-\sqrt{3} + i$$

 $\mathbf{r} = \sqrt{\sqrt{3}^2 + 1^2} = \sqrt{4} = 2$
 $\tan \alpha = \frac{1}{\sqrt{3}}$
 $\alpha = \frac{\pi}{6}$
 $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
 $-\sqrt{3} + i = 2\operatorname{cis}\left(\frac{5\pi}{6}\right)$

Question 2

$$6\cos\left(\frac{3\pi}{4}\right) = -3\sqrt{2}, \qquad 6\sin\left(\frac{3\pi}{4}\right) = 3\sqrt{2}$$
$$6\cos\left(\frac{3\pi}{4}\right) = -3\sqrt{2} + 3\sqrt{2}i$$

Question 3

$$f(x) = \begin{cases} x \div 4 & \text{for} \quad x \le 0 \\ x^2 & \text{for} \quad 0 < x < 3 \\ 3x & \text{for} \quad x \ge 3 \end{cases}$$

$$f^{-1}(x) = \begin{cases} 4x & \text{for } x \le 0\\ \sqrt{x} & \text{for } 0 < x < 9\\ x \div 3 & \text{for } x \ge 9 \end{cases}$$

Question 4

All of the equations f(x), g(x) and h(x) match the graph.

Given
$$f(x) = 3 + \sqrt{x+1}$$

$$x \xrightarrow{+1} x + 1 \xrightarrow{\int} \sqrt{x+1} \xrightarrow{+3} 3 + \sqrt{x+1}$$
$$(x-3)^2 - 1 \xleftarrow{-1} (x-3)^2 \xleftarrow{(x)^2} x - 3 \xleftarrow{-3} x$$

$$f^{-1}(x) = (x-3)^2 - 1$$

Domain: $\{x \in \mathbb{R} : x \ge 3\}$

Range: $\{y \in \mathbb{R} : y \ge -1\}$

Question 6

a
$$\mathbf{p} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$

b
$$q = -2i + 4j + 3k$$

$$\mathbf{c} \qquad \cos \theta = \frac{\mathbf{p} \cdot \mathbf{q}}{|\mathbf{p}||\mathbf{q}|} = \frac{-4 + 12 - 6}{\sqrt{17}\sqrt{29}}$$
$$\theta \approx 84.832 \approx 85^{\circ}$$

The angle between **p** and **q** is approximately 85°.

d The x-axis has vector $\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$

$$\cos\theta = \frac{2}{\sqrt{17}\sqrt{1}}$$

$$\theta \approx 60.983 \approx 61^{\circ}$$

The angle between \mathbf{p} and the x-axis has approximately 61°.

e The y-axis has vector $0\mathbf{i} + \mathbf{j} + 0\mathbf{k}$

$$\cos\theta = \frac{4}{\sqrt{29}\sqrt{1}}$$

$$\theta \approx 42.031 \approx 42^{\circ}$$

The angle between \mathbf{q} and the y-axis has approximately 42°.

The resultant of i+5j-4k and i-3j+3k is 2i+2j-k.

$$|2\mathbf{i} + 2\mathbf{j} - \mathbf{k}| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{9} = 3$$

$$\frac{1}{3}(2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}$$

A unit vector parallel to the resultant of $\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$ and $\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$ is $\frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} - \frac{1}{3}\mathbf{k}$.

Question 8

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix},$$

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}, \qquad \mathbf{a} \times \mathbf{b} = \begin{pmatrix} 3 \times 2 - (-2)(-2) \\ -2 \times 2 + 3(-2) \\ 2 \times (-2) - 3(3) \end{pmatrix} = \begin{pmatrix} 2 \\ -10 \\ -13 \end{pmatrix}$$

Question 9

$$g(f(x)) = \sqrt{4 - 5\sqrt{x}}$$

The maximum value of $5\sqrt{x}$ is 4, $x = \frac{16}{25} = 0.64$

Domain: $\{x \in \mathbb{R} : 0 \le x \le 0.64\}$

Minimum value of g(f(x)) occurs when $5\sqrt{x} = 4$, g(f(x)) = 0

Maximum value of g(f(x)) occurs when x = 0, g(f(x)) = 2

Range: $\{y \in \mathbb{R} : 0 \le y \le 2\}$

Question 10

$$\mathbf{r} = (6t+1)\mathbf{i} + (t^3 + t^2 + 8t)\mathbf{j}$$

When
$$t = 0$$
, $\mathbf{r} = \mathbf{i}$.

$$\mathbf{v} = 6\mathbf{i} + (3t^2 + 2t + 8)\mathbf{i}$$

When
$$t = 0$$
, $v = 6i + 8j$.

$$|\mathbf{v}| = \sqrt{6^2 + 8^2} = \sqrt{100} = 10$$

$$\mathbf{a} = (6t + 2)\mathbf{j}$$

When
$$t = 0$$
, $\mathbf{a} = 2\mathbf{j}$.

Initial velocity is (6i + 8j) m/s

Initial speed is 10 m/s

Initial acceleration is 2jm/s²

$$|x-5|+|x+5| \le 14$$
 for $-7 \le x \le 7$.

Question 12

$$z = a + ib$$
, $\overline{z} = a - ib$

$$z + \overline{z} = a + ib + a - ib = 2a$$

b
$$z - \overline{z} = a + ib - (a - ib) = 2ib$$

c
$$z\overline{z} = (a+ib)(a-ib) = a^2 - iab + iab - i^2b^2 = a^2 - (-1)b^2 = a^2 + b^2$$

$$\mathbf{d} \qquad \frac{z}{\overline{z}} = \frac{a+ib}{a-ib} \times \frac{a+ib}{a+ib} = \frac{a^2+2iab+i^2b^2}{a^2+b^2} = \frac{a^2+2iab-b^2}{a^2+b^2} = \frac{a^2-b^2}{a^2+b^2} + i\frac{2ab}{a^2+b^2}$$

Question 13

Point *P* has position vector $\begin{pmatrix} 1 - \frac{4}{5} \times 5 \\ 6 - \frac{4}{5} \times 5 \\ -7 + \frac{4}{5} \times 10 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix}.$

Question 14

$$f \circ g(x) = \sqrt{x-9}^2 = x-9$$

Domain: $\{x \in \mathbb{R} : x \ge 9\}$, Range: $\{y \in \mathbb{R} : y \ge 0\}$

$$g \circ f(x) = \sqrt{x^2 - 9}$$

Domain: $\{x \in \mathbb{R} : |x| \ge 3\}$, Range: $\{y \in \mathbb{R} : y \ge 0\}$

$$f \circ g(x) = \sqrt{9 - x^2} = 9 - x$$

Domain:
$$\{x \in \mathbb{R} : x \le 9\}$$
,

Range:
$$\{y \in \mathbb{R} : y \ge 0\}$$

$$g \circ f(x) = \sqrt{9 - x^2}$$

Domain:
$$\{x \in \mathbb{R}: -3 \le x \le 3\}$$
,

Range:
$$\{y \in \mathbb{R} : 0 \le y \le 3\}$$

Question 16

a Re
$$z > \text{Im } z$$

Both
$$3 \le |z| \le 5$$
 and $\frac{\pi}{6} \le \arg z \le \frac{\pi}{4}$

(note the use of the dashed line to imply the line itself is not included)

b
$$|z| \le 3$$

$$\arg[z-(2+i)] = \frac{\pi}{4}$$

(note the horizontal line is dashed to imply that the line itself is not included)

$$|z-1| = 2|z-i|$$

$$|x+iy-1| = 2|x+iy-i| = 2|x+i(y-1)|$$

$$(x-1)^2 + y^2 = 2^2 \left[x^2 + (y-1)^2 \right]$$

$$x^2 - 2x + 1 + y^2 = 4x^2 + 4y^2 - 8y + 4$$

$$3x^2 + 2x + 3y^2 - 8y = -3$$

$$x^2 + \frac{2}{3}x + y^2 - \frac{8}{3}y = -1$$

$$\left(x + \frac{1}{3} \right)^2 - \frac{1}{9} + \left(y - \frac{4}{3} \right)^2 - \frac{16}{9} = -\frac{9}{9}$$

$$\left(x + \frac{1}{3} \right)^2 + \left(y - \frac{4}{3} \right)^2 = \frac{8}{9}$$

The points form a circle with centre $\left(-\frac{1}{3}, \frac{4}{3}\right)$ and radius $\frac{2\sqrt{2}}{3}$.

Question 18

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \cdot \begin{pmatrix} -8 \\ 4 \\ 1 \end{pmatrix} = 0$$
$$-8a + 4b + c = 0$$
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \sqrt{a^2 + b^2 + c^2}$$

Unit vector perpendicular to $\begin{pmatrix} -8\\4\\1 \end{pmatrix}$ is $\frac{1}{\sqrt{a^2+b^2+c^2}} \begin{pmatrix} a\\b\\c \end{pmatrix}$, with -8a+4b+c=0.

There are many possible answers, for example $\frac{1}{\sqrt{17}} \begin{pmatrix} 0 \\ -1 \\ 4 \end{pmatrix}$, $\frac{1}{9} \begin{pmatrix} 1 \\ 4 \\ -8 \end{pmatrix}$.

a The minimum possible value of Im(z) is 1.

b The maximum possible value of |Re(z)| is 16.

Distance from origin to centre of circle is $\sqrt{12^2 + 5^2} = 13$ units and radius of the circle is 4. Maximum value of |z| is 13 + 4 = 17 units.

d Minimum value of |z| is 13 - 4 = 9 units.

$$\tan\theta = \frac{5}{12}$$

 $\theta = 0.3948 \text{ radians}$

$$\tan\alpha = \frac{4}{12.37}$$

 $\alpha = 0.3128 \ radians$

e 0.3948 - 0.3128 = 0.082 radians.

The minimum possible value of arg(z) is 0.082 radians.

f 0.3948 + 0.3128 = 0.708 radians.

The maximum possible value of arg(z) is 0.708 radians.

The lines will intersect if $L_1 = L_2$, so when:

$$3+4\lambda=2+3\mu$$

$$2 + \lambda = 1 + \mu$$

$$-1+3\lambda=1+2\mu$$

There is no solution for this system of equations, therefore L₁ and L₂ do not intersect.

Question 21

$$a = 3$$
, $b = 5$, $c = 3$

$$|\mathbf{r}| = 3$$
 intersects with $|\mathbf{r}| = 3\theta$

$$3 = 3\theta$$

$$\theta = 1$$

The point of intersection is (3, 1).

$$|\mathbf{r}| = 5$$
 intersects with $|\mathbf{r}| = 3\theta$

$$5 = 3\theta$$

$$\theta = \frac{5}{3}$$

The point of intersection is $\left(5, \frac{5}{3}\right)$.

Question 22

Line L, with equation, $\mathbf{r} = \begin{pmatrix} -1 \\ -10 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ meets plane with equation $\mathbf{r} \cdot \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 5$, where

$$\begin{pmatrix} -1+2\lambda \\ -10+3\lambda \\ 4-\lambda \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 5.$$

$$-2+4\lambda-40+12\lambda-4+\lambda=5$$

$$17\lambda - 46 = 5$$

$$\lambda = 3$$

$$\mathbf{r} = \begin{pmatrix} -1 \\ -10 \\ 4 \end{pmatrix} + 3 \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$$

From the blue lines on the Argand diagram it can be seen that a = 9, b = -4.

From the green line it can be seen that c = 7, d = 12.

From the pink line it can be seen that e = 9, f = -10.

Question 24

$$2\lambda + \mu + 2\eta = -6$$

$$3\lambda + 4\mu + 0\eta = 5$$

$$\lambda - \mu + 0\eta = -3$$

Solving gives $\lambda = -1$, $\mu = 2$, $\eta = -3$.

$$\begin{pmatrix} -6 \\ 5 \\ -3 \end{pmatrix} = -\mathbf{a} + 2\mathbf{b} - 3\mathbf{c}$$

Point F has position vector
$$\left(\frac{-1+3}{2}\right)\mathbf{i} + \left(\frac{6+0}{2}\right)\mathbf{j} + \left(\frac{-8+4}{2}\right)\mathbf{k} = \mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$

F is the centre of the sphere.

$$|\overrightarrow{BF}| = \sqrt{2^2 + (-3)^2 + 6^2} = 7$$
, so the radius of the sphere is 7.

The magnitude of \overrightarrow{CF} must be 7 for point C to lie on the surface of the sphere.

$$\sqrt{6^2 + (-3)^2 + (c+2)^2} = 7$$

$$c = 0$$

The magnitude of \overrightarrow{DF} must be 7 for point D to lie on the surface of the sphere.

$$\sqrt{(-2)^2 + (d-3)^2 + (-3)^2} = 7$$

$$d = 9$$

The magnitude of \overrightarrow{EF} must be 7 for point E to lie on the surface of the sphere.

$$\sqrt{3^2 + (-2)^2 + (e+2)^2} = 7$$

$$e=4$$

Question 26

$$\mathbf{a} \qquad \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = 4$$

$$4 = \sqrt{1^2 + (-2)^2} \times \sqrt{2^2 + 3^2 + (-1)^2} \times \cos \theta = \sqrt{70} \cos \theta$$

$$\theta \approx 1.07 \text{ radians}$$

b From the equations for L_1 and L_2 , if the two lines were to meet it would follow that:

$$-2 + \lambda = 5 + 2\mu$$

$$8-2\lambda=-3-\mu$$

Solving gives $\mu = -1$, $\lambda = 5$.

The point of intersection of the two lines has position vector $\mathbf{r} = 3\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$.

 $r \cdot n = a \cdot n$

$$\mathbf{r} \cdot \{(3-2)\mathbf{i} + [1-(-1)]\mathbf{j} + (1-3)\mathbf{k}\} = (3\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})$$
$$\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = 13$$

Assume that L_1 intersects with L_2 .

It follows that:

$$2+4\lambda=8+2\mu$$

$$3-2\lambda=\mu$$

Solving gives
$$\lambda = \frac{3}{2}$$
, $\mu = 0$.

We also know that $-1+3\lambda = 1+2\mu$, but

$$-1+3\left(\frac{3}{2}\right) \neq 1+2(0)$$
, therefore L_1 and L_2 do not intersect.

Question 28

$$\cos 4\theta = 2\cos^2 2\theta - 1$$

$$= 2(2\cos^2 \theta - 1)^2 - 1$$

$$= 2(4\cos^4 \theta - 4\cos^2 \theta + 1) - 1$$

$$= 8\cos^4 \theta - 8\cos^2 \theta + 1$$

Question 29

Given
$$z_1 = a + bi$$

$$z_2 = -b + ai$$
, $z_3 = -a - bi$, $z_4 = b - ai$

a

$$x+2y+z=7$$
 Eqn ①
 b
 $2x+3y+5z=4$
 Eqn ②

 $x+3y+2z=11$
 Eqn ②
 $x+2z=1$
 Eqn ②

 $2x+5y+5z=26$
 Eqn ③
 $3x+y+7z=3$
 Eqn ③

 Eqn ②
 $x+2y+z=7$
 Eqn ②
 $3y+z=2$

 Eqn ②
 $y+z=4$
 Eqn ②
 $x+2z=1$

 Eqn ③
 $y+z=12$
 Eqn ②
 $y+z=0$

 Eqn ②
 $y+z=12$
 Eqn ②
 $y+z=0$

 Eqn ②
 $y+z=12$
 Eqn ②
 $y+z=0$

 Eqn ③
 $y+z=12$
 Eqn ③
 $y+z=0$

 Eqn ③
 $y+z=12$
 Eqn ③
 $y+z=0$

 Eqn ③
 $y+z=0$
 $y+z=0$

 Eqn ③

Question 31

$$x = 2\sec\left(t - \frac{\pi}{2}\right), \qquad y = 4\tan\left(t - \frac{\pi}{2}\right)$$

$$\left(\frac{x}{2}\right)^{2} - \left(\frac{y}{4}\right)^{2} = \sec^{2}\left(t - \frac{\pi}{2}\right) - \tan^{2}\left(t - \frac{\pi}{2}\right) = \frac{1 - \sin^{2}\left(t - \frac{\pi}{2}\right)}{\cos^{2}\left(t - \frac{\pi}{2}\right)}$$

$$= \frac{1 - \left(1 - \cos^{2}\left(t - \frac{\pi}{2}\right)\right)}{\cos^{2}\left(t - \frac{\pi}{2}\right)} = \frac{\cos^{2}\left(t - \frac{\pi}{2}\right)}{\cos^{2}\left(t - \frac{\pi}{2}\right)}$$

$$\frac{x^{2}}{4} - \frac{y^{2}}{16} = 1$$

$$4x^{2} - y^{2} = 16 \text{ (for } x \ge 2).$$

$$180 - 15 \times 3\lambda = 0$$

$$\lambda = 4$$

$$\mathbf{r} = 600\mathbf{i} + 240\mathbf{j} + 180\mathbf{k} - t(40\mathbf{i} + 16\mathbf{j} + 12\mathbf{k})$$

$$\mathbf{v} = [-40\mathbf{i} - 16\mathbf{j} - 12\mathbf{k}] \text{ m/s}$$

$$|\mathbf{r}_0 - \mathbf{r}_{15}| = \sqrt{600^2 + 240^2 + 180^2} = \sqrt{450000} \approx 670.82$$

The glider travels approximately 670 m.

Question 33

If p = 6, 0 = q.

There is no value of q that will give a unique solution for this system of linear equations.

i If p = 6 and q = 0 there are infinite solutions for this system of linear equations.
 ii If p = 6 and q ≠ 0 there is no solution for this system of linear equations.

b If
$$p = 5$$
, $z = -q$, $y = \frac{1}{2}$ and $x = 2q + \frac{1}{2}$.

c If
$$p = 6$$
 and $q = 0$, when $x = 1$:
 $y + 3z = 0$
 $2y - 2z = 1$
 $z = -\frac{1}{8}$, $y = \frac{3}{8}$, $x = 1$

a
$$\dot{\mathbf{r}} = 4\cos 2t \,\mathbf{i} + 3\mathbf{j}$$

 $\mathbf{r} = 2\sin 2t \,\mathbf{i} + 3t \,\mathbf{j} + \mathbf{c}$
When $t = 0$, $\mathbf{r} = 2\mathbf{i} - \mathbf{j}$
 $\mathbf{c} = 2\mathbf{i} - \mathbf{j}$
 $\mathbf{r} = (2\sin 2t + 2)\mathbf{i} + (3t - 1)\mathbf{j}$
When $t = \pi$, $\mathbf{r} = 2\mathbf{i} + (3\pi - 1)\mathbf{j}$

$$\dot{\mathbf{r}} = 4\cos 2t \,\mathbf{i} + 3\mathbf{j}$$

$$\ddot{\mathbf{r}} = -8\sin 2t \,\mathbf{i} + 0\mathbf{j}$$

$$\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}} = 0$$

$$(4\cos 2t \,\mathbf{i} + 3\mathbf{j}) \cdot (-8\sin 2t \,\mathbf{i} + 0\mathbf{j}) = 0$$

$$-32\sin 2t \cos 2t = 0$$

$$-16\sin 4t = 0$$

$$4t = \pi, \ t > 0 \implies t = \frac{\pi}{4}, \ t > 0$$
When $t = \frac{\pi}{4}$:
The position vector is $\mathbf{r} = \left[4\mathbf{i} + \left(\frac{3\pi}{4} - 1\right)\mathbf{j}\right]\mathbf{m}$

$$|\dot{\mathbf{r}}| = |0\mathbf{i} + 3\mathbf{j}| = 3 \,\mathbf{m/s}$$

And the speed is 3 m/s.

b

Question 35

$$x+2y+z=3 Eq^{n} ①$$

$$-x+(p-2)y+(q-1)z=0 Eq^{n} ②$$

$$x+(r+2)y+(s+1)z=5 Eq^{n} ③$$

$$x+2y+z=3$$

Eqⁿ ①
$$x + 2y + z = 3$$

Eqⁿ ② + Eqⁿ ① $py + qz = 3$
Eqⁿ ③ - Eqⁿ ① $ry + sz = 2$

$$y = \frac{3 - qz}{p}$$

$$y = \frac{2 - sz}{r}$$

$$3r - qrz = 2p - psz$$

$$z(-qr + ps) = 2p - 3r$$

$$z = \frac{2p - 3r}{-qr + ps}$$

If qr = ps there is no solution.

In order for there to be a unique solution, $qr \neq ps$.

$$\mathbf{r} = \begin{pmatrix} -3 \\ -7 \\ 8 \end{pmatrix} + \lambda_1 \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$$

Vector from point *A* to point on line closest to point *A*:

$$\overrightarrow{AP} = -\begin{pmatrix} 1\\0\\-4 \end{pmatrix} + \begin{pmatrix} -3\\-7\\8 \end{pmatrix} + \lambda_1 \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 3\lambda_1 - 4\\4\lambda_1 - 7\\12 - 5\lambda_1 \end{pmatrix}$$

The line is parallel to $\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$ and so $\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} 3\lambda_1 - 4 \\ 4\lambda_1 - 7 \\ 12 - 5\lambda_1 \end{pmatrix} = 0$

$$9\lambda_1 - 12 + 16\lambda_1 - 28 - 60 + 25\lambda_1 = 0$$

$$50\lambda_1 = 100 \implies \lambda_1 = 2$$

$$\overrightarrow{AP} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

$$|\overrightarrow{AP}| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{9} = 3 \text{ units}$$

The shortest distance from the line **r** to the point with position vector $\begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}$ is 3 units.

Question 37

$$a = -g\mathbf{j}\,\mathbf{m}/\mathbf{s}^2$$

$$v = -\mathbf{g}t\mathbf{j} + \mathbf{c}$$

When
$$t = 0$$
, $|v| = u$

$$|v| = \sqrt{u^2}$$

$$\mathbf{c} = -u\sin\theta\,\mathbf{i} + u\cos\theta\,\mathbf{j}$$

$$v = -u\sin\theta\,\mathbf{i} + (u\cos\theta - gt)\mathbf{j}$$

When
$$t = 0$$
, $x = 0\mathbf{i} + 0\mathbf{j}$

$$x = \left[ut \cos \theta \, \mathbf{i} + \left(ut \sin \theta - \frac{gt^2}{2} \right) \mathbf{j} \right] \mathbf{m}$$

b Given
$$u = 50 \,\mathrm{m/s}$$

$$g = 10$$

$$x = 50t \cos \theta \mathbf{i} + (50t \sin \theta - 5t^2)\mathbf{j} = 100\mathbf{i} + 40\mathbf{j}$$

$$50t\cos\theta = 100$$

$$50t\sin\theta - 5t^2 = 40$$

Solving gives $\theta \approx 34.9^{\circ}$, 76.9° .

The student's conclusion is not correct. The system of equations has 4 equations with three unknown factors. There is one unique solution. z = 3, y = -1 and x = 1.

Question 39

$$\mathbf{a} \qquad v = -10t\mathbf{j} + \mathbf{c}$$

When
$$t = 0$$
, $v = 30i + 24j$

$$\mathbf{c} = 30\mathbf{i} + 24\mathbf{j}$$

$$v = [30\mathbf{i} + (24 - 10t)\mathbf{j}] \text{m/s}$$

b
$$x = 30t\mathbf{i} + (24t - 5t^2)\mathbf{j} + \mathbf{c}$$

When
$$t = 0$$
, its position relative to point T is $(0, 0)$

$$x = \left\lceil 30t\mathbf{i} + (24t - 5t^2)\mathbf{j} \right\rceil \mathbf{m}$$

- **c** Highest point is reached when $24t 5t^2$ is at its maximum.
 - Observe graph or consider when 24-10t = 0.

$$t = 2.4$$
 seconds.

d
$$30t = 135$$

$$t = 4.5$$
 seconds

e The greatest height reached by the ball is $24 \times 2.4 - 5 \times 2.4^2 = 28.8 \,\mathrm{m}$

f When
$$t = 4.5$$
, $x = [30 \times 4.5\mathbf{i} + (24 \times 4.5 - 5(4.5)^2)\mathbf{j}] \text{m}$

$$x = [135i + 6.75j]m$$

$$c = 6.75$$

Using proof by induction.

For $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

When n = -1

LHS =
$$(\cos \theta + i \sin \theta)^{-1} = \frac{1}{(\cos \theta + i \sin \theta)}$$

= $\frac{1}{(\cos \theta + i \sin \theta)} \times \frac{(\cos \theta - i \sin \theta)}{(\cos \theta - i \sin \theta)}$
= $\frac{\cos \theta - i \sin \theta}{\cos^2 \theta - i \sin \theta \cos \theta + i \sin \theta \cos \theta - i^2 \sin^2 \theta}$
= $\frac{\cos \theta - i \sin \theta}{\cos^2 \theta + \sin^2 \theta} = \cos \theta - i \sin \theta$
= $\cos (-\theta) + i \sin (-\theta)$ [as $\cos (-\theta) = \cos \theta$ and $\sin (-\theta) = -\sin \theta$]
= RHS

Assume that the statement is true for n = k, $(\cos \theta + i \sin \theta)^k = \cos(k\theta) + i \sin(k\theta)$

When n = k - 1, by de Moivre's theorem $(\cos \theta + i \sin \theta)^{k-1} = \cos[(k-1)\theta] + i \sin[(k-1)\theta]$

LHS =
$$(\cos \theta + i \sin \theta)^{k-1} = (\cos \theta + i \sin \theta)^k \frac{1}{(\cos \theta + i \sin \theta)}$$

= $\frac{1}{(\cos \theta + i \sin \theta)} \times \frac{(\cos \theta - i \sin \theta)}{(\cos \theta - i \sin \theta)}$
= $[\cos (k\theta) + i \sin (k\theta)] \times [\cos (-\theta) + i \sin (-\theta)]$
= $\cos (k\theta) \times \cos (-\theta) = \cos [(k-1)\theta] = \cos [(k-1)\theta] + i \sin [(k-1)\theta]$
= $\frac{\cos \theta - i \sin \theta}{\cos^2 \theta - i \sin \theta \cos \theta + i \sin \theta \cos \theta - i^2 \sin^2 \theta}$
= $\frac{\cos \theta - i \sin \theta}{\cos^2 \theta + \sin^2 \theta} = \cos \theta - i \sin \theta$
= $\cos (-\theta) + i \sin (-\theta)$ [as $\cos (-\theta) = \cos \theta$ and $\sin (-\theta) = -\sin \theta$]
= RHS

For a negative integer, it then follows that $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$, as we have shown that it is true when n = -1 and for numbers successively one less than -1 (so negative integers).

Question 41

$$\left(\frac{z_1}{z_2 z_3}\right)^{-3} = \left(\frac{z_2 z_3}{z_1}\right)^3 = \left(\frac{2 \operatorname{cis} \frac{\pi}{2} \times 3 \operatorname{cis} \frac{2\pi}{3}}{\sqrt{6} \operatorname{cis} \frac{5\pi}{6}}\right)^3 = \left(\frac{6 \operatorname{cis} \frac{7\pi}{6}}{\sqrt{6} \operatorname{cis} \frac{5\pi}{6}}\right)^3 = \left(\sqrt{6} \operatorname{cis} \frac{2\pi}{6}\right)^3 = 6\sqrt{6} \operatorname{cis} \pi$$

$$= 6\sqrt{6} \operatorname{cos} \pi + i6\sqrt{6} \operatorname{sin} \pi = -6\sqrt{6}$$

$$x+3y-z=3 \qquad \text{Eq}^{n} \, \mathbb{O}$$

$$-x-3y+z=3 \qquad \text{Eq}^{n} \, \mathbb{O}$$

$$2x+6y-2z=6 \qquad \text{Eq}^{n} \, \mathbb{O}$$

$$\text{Eq}^{n} \, \mathbb{O} \qquad x+3y-z=3$$

$$\text{Eq}^{n} \, \mathbb{O} + \text{Eq}^{n} \, \mathbb{O} \qquad 0=6$$

$$\text{Eq}^{n} \, \mathbb{O} - 2\text{Eq}^{n} \, \mathbb{O} \qquad 0=0$$

As 0 does not equal 6, there is no solution to this system of linear equations.

Question 43

- **a** There will be infinite solutions to this system of equations when p = -4 and q = -1.
- **b** There will be no solutions to this system of equations when p = -4 and $q \ne -1$.

c
$$(k+4)z = k+8$$

 $(k+4) \times 3 = k+8$
 $3k+12 = k+8$
 $2k = -4 \implies k = -2$
 $p = -2, q = 5$
 $5y-5(3) = -5 \implies y = 2$
 $x-2+2(3) = 3 \implies x = -1$
 $m = -1, n = 2, p = -2 \text{ and } q = 5.$

$$\mathbf{r} = \begin{pmatrix} -2\\0\\0 \end{pmatrix} + \lambda_1 \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$

Vector from point *A* to point on line closest to point *A*:

$$\overrightarrow{AP} = -\begin{pmatrix} -1\\8\\5 \end{pmatrix} + \begin{pmatrix} -2\\0\\0 \end{pmatrix} + \lambda_1 \begin{pmatrix} -1\\1\\1 \end{pmatrix} = \begin{pmatrix} -\lambda_1 - 1\\\lambda_1 - 8\\\lambda_1 - 5 \end{pmatrix}$$

The line is parallel to $\begin{pmatrix} -1\\1\\1 \end{pmatrix}$ and so $\begin{pmatrix} -1\\1\\1 \end{pmatrix} \cdot \begin{pmatrix} -\lambda_1 - 1\\\lambda_1 - 8\\\lambda_1 - 5 \end{pmatrix} = 0$

$$\lambda_1 + 1 + \lambda_1 - 8 + \lambda_1 - 5 = 0$$
$$3\lambda_1 - 12 = 0$$
$$\lambda_1 = 4$$

$$\overrightarrow{AP} = \begin{pmatrix} -5 \\ -4 \\ -1 \end{pmatrix}$$

$$|\overrightarrow{AP}| = \sqrt{(-5)^2 + (-4)^2 + (-1)^2} = \sqrt{42} \text{ units } \approx 6.48 \text{ units}$$

The shortest distance from the path the dog follows to the point where my movement-activated light is situated is 6.48 m. If the dog continues along this path, you would not expect the light to be activated as the dog does not go within 6 m of the light.